File size: 22,804 Bytes
995bbbc
1229c2b
 
 
 
995bbbc
1229c2b
 
995bbbc
 
1229c2b
 
995bbbc
1229c2b
 
 
 
995bbbc
1229c2b
995bbbc
 
 
1229c2b
 
 
 
 
 
 
 
 
 
 
995bbbc
 
 
 
 
 
1229c2b
 
995bbbc
 
 
1229c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
995bbbc
1229c2b
 
 
 
995bbbc
1229c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
995bbbc
1229c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
995bbbc
1229c2b
 
 
 
 
 
995bbbc
1229c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
995bbbc
1229c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
995bbbc
1229c2b
 
 
 
 
995bbbc
 
 
1229c2b
995bbbc
 
 
 
1229c2b
995bbbc
 
 
 
 
 
1229c2b
995bbbc
 
1229c2b
995bbbc
 
1229c2b
995bbbc
1229c2b
 
 
995bbbc
1229c2b
 
 
5e51ac9
 
995bbbc
1229c2b
995bbbc
 
1229c2b
995bbbc
 
 
 
 
 
 
1229c2b
ae4922d
 
 
 
995bbbc
ae4922d
 
995bbbc
ae4922d
 
995bbbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae4922d
995bbbc
 
 
ae4922d
995bbbc
ae4922d
995bbbc
 
 
ae4922d
 
 
 
995bbbc
ae4922d
 
 
 
 
 
 
995bbbc
 
ae4922d
 
 
 
995bbbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae4922d
995bbbc
ae4922d
 
 
1229c2b
 
995bbbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import io
import json
import pytz
import numpy as np
import pandas as pd
pd.options.mode.chained_assignment = None
from geopy import distance
import plotly.graph_objects as go
import base64
import gpxpy
from gpx_converter import Converter
from sunrisesunset import SunriseSunset
from datetime import datetime, date, timedelta
from beaufort_scale.beaufort_scale import beaufort_scale_kmh
from timezonefinder import TimezoneFinder
tf = TimezoneFinder()

from dash import Dash, dcc, html, dash_table, Input, Output, State, no_update, callback, _dash_renderer
import dash_bootstrap_components as dbc
import dash_mantine_components as dmc
_dash_renderer._set_react_version('18.2.0')

from dash_extensions import Purify

import srtm
elevation_data = srtm.get_data()

import requests_cache
import openmeteo_requests
from retry_requests import retry

### VARIABLES ###

hdate_object = date.today()
hour = '10'
minute = '30'
speed = 4.0
frequency = 2

# Variables to become widgets
igpx = 'default_gpx.gpx'
hdate = hdate_object.strftime('%Y-%m-%d')
time = hour + ':' + minute
granularity = frequency * 1000

# Setup the Open Meteo API client with cache and retry on error
cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
openmeteo = openmeteo_requests.Client(session = retry_session)

# Open Meteo weather forecast API
url = 'https://api.open-meteo.com/v1/forecast'
params = {
	'timezone': 'auto',
	'minutely_15': ['temperature_2m', 'rain', 'wind_speed_10m', 'weather_code', 'is_day'],
	'hourly': ['rain'],
}

# Load the JSON files mapping weather codes to descriptions and icons
with open('weather_icons_custom.json', 'r') as file:
	icons = json.load(file)

# Weather icons URL
icon_url = 'https://raw.githubusercontent.com/basmilius/weather-icons/refs/heads/dev/production/fill/svg/'
sunrise_icon = icon_url + 'sunrise.svg'
sunset_icon = icon_url + 'sunset.svg'

### FUNCTIONS ###

# Sunrise sunset
def sunrise_sunset(lat_start, lon_start, lat_end, lon_end, hdate):

    tz = tf.timezone_at(lng=lon_start, lat=lat_start)
    zone = pytz.timezone(tz)

    day = datetime.strptime(hdate, '%Y-%m-%d')

    dt = day.astimezone(zone)

    rs_start = SunriseSunset(dt, lat=lat_start, lon=lon_start, zenith='official')
    rise_time = rs_start.sun_rise_set[0]

    rs_end = SunriseSunset(dt, lat=lat_end, lon=lon_end, zenith='official')
    set_time = rs_end.sun_rise_set[1]

    sunrise = rise_time.strftime('%H:%M')
    sunset = set_time.strftime('%H:%M')

    return sunrise, sunset

# Map weather codes to descriptions and icons
def map_icons(df):
	code = df['weather_code']

	if df['is_day'] == 1:
		icon = icons[str(code)]['day']['icon']
		description = icons[str(code)]['day']['description']
	elif df['is_day'] == 0:
		icon = icons[str(code)]['night']['icon']
		description = icons[str(code)]['night']['description']

	df['Weather'] = icon_url + icon
	df['Weather outline'] = description

	return df

# Quantitative pluviometry to natural language
def rain_intensity(precipt):
    if precipt >= 50:
        rain = 'Extreme rain'
    elif 50  < precipt <= 16:
        rain = 'Very heavy rain'
    elif 4  <= precipt < 16:
        rain = 'Heavy rain'
    elif 1  <= precipt < 4:
        rain = 'Moderate rain'
    elif 0.25  <= precipt < 1:
        rain = 'Light rain'
    elif 0 < precipt < 0.25:
        rain = 'Light drizzle'
    else:
        rain = 'No rain / No info'
    return rain

# Function to add elevation
def add_ele(row):
    if pd.isnull(row['altitude']):
        row['altitude'] = elevation_data.get_elevation(row['latitude'], row['longitude'], 0)
    else:
        row['altitude'] = row['altitude']
    return row

# Compute distances using the Karney algorith with Euclidian altitude correction
def eukarney(lat1, lon1, alt1, lat2, lon2, alt2):
    p1 = (lat1, lon1)
    p2 = (lat2, lon2)
    karney = distance.distance(p1, p2).m
    return np.sqrt(karney**2 + (alt2 - alt1)**2)

# Obtain the weather forecast for each waypoint at each specific time
def get_weather(df_wp):

    params['latitude'] = df_wp['latitude']
    params['longitude'] = df_wp['longitude']
    params['elevation'] = df_wp['longitude']

    start_dt = datetime.strptime(hdate + 'T' + time, '%Y-%m-%dT%H:%M')

    delta_dt = start_dt + timedelta(seconds=df_wp['seconds'])
    delta_read = delta_dt.strftime('%Y-%m-%dT%H:%M')

    start_period = (delta_dt - timedelta(seconds=1800)).strftime('%Y-%m-%dT%H:%M')
    end_period = (delta_dt + timedelta(seconds=1800)).strftime('%Y-%m-%dT%H:%M')

    time_read = delta_dt.strftime('%H:%M')

    df_wp['Time'] = time_read

    params['start_minutely_15'] = delta_read
    params['end_minutely_15'] = delta_read
    params['start_hour'] = delta_read
    params['end_hour'] = delta_read

    responses = openmeteo.weather_api(url, params=params)

    # Process first location. Add a for-loop for multiple locations or weather models
    response = responses[0]

    # Process hourly data. The order of variables needs to be the same as requested.
    minutely = response.Minutely15()
    hourly = response.Hourly()

    minutely_temperature_2m = minutely.Variables(0).ValuesAsNumpy()[0]
    rain = hourly.Variables(0).ValuesAsNumpy()[0]
    minutely_wind_speed_10m = minutely.Variables(2).ValuesAsNumpy()[0]
    weather_code = minutely.Variables(3).ValuesAsNumpy()[0]
    is_day = minutely.Variables(4).ValuesAsNumpy()[0]

    df_wp['Temp (°C)'] = minutely_temperature_2m
    df_wp['weather_code'] = weather_code
    df_wp['is_day'] = is_day

    v_rain_intensity = np.vectorize(rain_intensity)
    df_wp['Rain level'] = v_rain_intensity(rain)

    v_beaufort_scale_kmh = np.vectorize(beaufort_scale_kmh)

    df_wp['Wind level'] = v_beaufort_scale_kmh(minutely_wind_speed_10m, language='en')

    df_wp['Rain (mm/h)'] = rain.round(1)
    df_wp['Wind (km/h)'] = minutely_wind_speed_10m.round(1)

    return df_wp

# Parse the GPX track
def parse_gpx(df_gpx, hdate):

    # Sunrise sunset

    lat_start, lon_start = df_gpx[['latitude', 'longitude']].head(1).values.flatten().tolist()
    lat_end, lon_end = df_gpx[['latitude', 'longitude']].tail(1).values.flatten().tolist()

    sunrise, sunset = sunrise_sunset(lat_start, lon_start, lat_end, lon_end, hdate)

    df_gpx = df_gpx.apply(lambda x: add_ele(x), axis=1)

    centre_lat = (df_gpx['latitude'].max() + df_gpx['latitude'].min()) / 2
    centre_lon = (df_gpx['longitude'].max() + df_gpx['longitude'].min()) / 2

    # Create shifted columns in order to facilitate distance calculation

    df_gpx['lat_shift'] = df_gpx['latitude'].shift(periods=-1).fillna(df_gpx['latitude'])
    df_gpx['lon_shift'] = df_gpx['longitude'].shift(periods=-1).fillna(df_gpx['longitude'])
    df_gpx['alt_shift'] = df_gpx['altitude'].shift(periods=-1).fillna(df_gpx['altitude'])

    # Apply the distance function to the dataframe

    df_gpx['distances'] = df_gpx.apply(lambda x: eukarney(x['latitude'], x['longitude'], x['altitude'], x['lat_shift'], x['lon_shift'], x['alt_shift']), axis=1).fillna(0)
    df_gpx['distance'] = df_gpx['distances'].cumsum().round(decimals = 0).astype(int)

    df_gpx = df_gpx.drop(columns=['lat_shift', 'lon_shift', 'alt_shift', 'distances']).copy()

    start = df_gpx['distance'].min()
    finish = df_gpx['distance'].max()

    dist_rang = list(range(start, finish, granularity))
    dist_rang.append(finish)

    way_list = []
    for waypoint in dist_rang:
        gpx_dict = df_gpx.iloc[(df_gpx.distance - waypoint).abs().argsort()[:1]].to_dict('records')[0]
        way_list.append(gpx_dict)

    df_wp = pd.DataFrame(way_list)

    df_wp['seconds'] = df_wp['distance'].apply(lambda x: int(round(x / (speed * (5/18)), 0)))

    df_wp = df_wp.apply(lambda x: get_weather(x), axis=1)

    df_wp['Temp (°C)'] = df_wp['Temp (°C)'].round(0).astype(int).astype(str) + '°C'
    df_wp['is_day'] = df_wp['is_day'].astype(int)
    df_wp['weather_code'] = df_wp['weather_code'].astype(int)
    df_wp = df_wp.apply(map_icons, axis=1)

    df_wp['Rain level'] = df_wp['Rain level'].astype(str)
    df_wp['Wind level'] = df_wp['Wind level'].astype(str)

    df_wp['dist_read'] = ('<p style="font-family:sans; font-size:14px;"><b>' +
                        df_wp['Weather outline'] + '</b><br><br>' +
                        df_wp['Temp (°C)'] + '<br><br>' +
                        df_wp['Rain level'] + '<br>' +
                        df_wp['Wind level'] + '<br><br>' +
                        df_wp['Time'] + '<br><br>' +
                        df_wp['distance'].apply(lambda x: str(int(round(x / 1000, 0)))).astype(str) + ' km | ' + df_wp['altitude'].round(0).astype(int).astype(str) + ' m</p>')

    df_wp = df_wp.reset_index(drop=True)

    df_wp['Waypoint'] = df_wp.index

    dfs = df_wp[['Waypoint', 'Time', 'Weather', 'Weather outline', 'Temp (°C)', 'Rain (mm/h)', 'Rain level', 'Wind (km/h)', 'Wind level']].copy()

    dfs['Wind (km/h)'] = dfs['Wind (km/h)'].round(1).astype(str).replace('0.0', '')
    dfs['Rain (mm/h)'] = dfs['Rain (mm/h)'].round(1).astype(str).replace('0.0', '')
    dfs['Temp (°C)'] = dfs['Temp (°C)'].str.replace('C', '')

    dfs['Weather'] = '<img style="float: right; padding: 0; margin: -6px; display: block;" width=48px; src=' + dfs['Weather'] + '>'

    return df_gpx, df_wp, dfs, sunrise, sunset, centre_lat, centre_lon

### PLOTS ###

# Plot map

def plot_fig(df_gpx, df_wp, centre_lat, centre_lon):

    fig = go.Figure()

    fig.add_trace(go.Scattermap(lon=df_gpx['longitude'],
                    lat=df_gpx['latitude'],
                    mode='lines', line=dict(width=4, color='firebrick'),
                    name='gpx_trace'))

    fig.add_trace(go.Scattermap(lon=df_wp['longitude'],
                    lat=df_wp['latitude'],
                    mode='markers+text', marker=dict(size=24, color='firebrick', opacity=0.8, symbol='circle'),
                    textfont=dict(color='white', weight='bold'),
                    text=df_wp.index.astype(str),
                    name='wp_trace'))

    fig.update_layout(map_style='open-street-map',
        map=dict(center=dict(lat=centre_lat, lon=centre_lon), zoom=12))

    fig.update_traces(showlegend=False, hoverinfo='none', hovertemplate=None, selector=({'name': 'wp_trace'}))
    fig.update_traces(showlegend=False, hoverinfo='skip', hovertemplate=None, selector=({'name': 'gpx_trace'}))

    return fig

### DASH APP ###

external_stylesheets = [dbc.themes.BOOTSTRAP, dmc.styles.ALL]

app = Dash(__name__, external_stylesheets=external_stylesheets)

server = app.server

# Layout

hours = [str(n).zfill(2) for n in range(0, 24)]
minutes = [str(n).zfill(2) for n in range(0, 60, 5)]

picker_style = {
    'display': 'inline-block',
    'width': '35px',
    'height': '32px',
    'cursor': 'pointer',
    'border': 'none',
}

def serve_layout():

    layout = html.Div([
        html.Div([dcc.Link('The Weather for Hikers', href='.',
                style={'color': 'darkslategray', 'font-size': 18, 'font-family': 'sans', 'font-weight': 'bold', 'text-decoration': 'none'}),
        ]),
        html.Div([dcc.Link('Freedom Luxembourg', href='https://www.freeletz.lu/freeletz/',
                target='_blank', style={'color': 'goldenrod', 'font-size': 14, 'font-family': 'sans', 'text-decoration': 'none'}),
        ]),
        html.Div([html.Br(),
        dbc.Row([
            dbc.Col([dcc.Upload(id='upload-gpx', children=html.Div(id='name-gpx'),
                                accept='.gpx, .GPX', max_size=10000000, min_size=100,
                                            style={
                                                'width': '174px',
                                                'height': '48px',
                                                'lineWidth': '174px',
                                                'lineHeight': '48px',
                                                'borderWidth': '2px',
                                                'borderStyle': 'solid',
                                                'borderColor': 'goldenrod',
                                                'textAlign': 'center',
                                                },
                                    ), dcc.Store(id='store-gpx')], width={'size': 'auto', 'offset': 1}),
            dbc.Col([dmc.Divider(orientation='vertical', size=2, color='goldenrod', style={'height': 82})], width={'size': 'auto'}),
            dbc.Col([dbc.Label('Date of the hike'), html.Br(),
                dcc.DatePickerSingle(id='calendar-date',
                placeholder='Select the date of your hike',
                display_format='Do MMMM YYYY',
                min_date_allowed=date.today(),
                max_date_allowed=date.today() + timedelta(days=7),
                initial_visible_month=date.today(),
                date=date.today()), dcc.Store(id='store-date')], width={'size': 'auto'}),
            dbc.Col([dmc.Divider(orientation='vertical', size=2, color='goldenrod', style={'height': 82})], width={'size': 'auto'}),
            dbc.Col([html.Div([html.Label('Start time'), html.Br(), html.Br(),
                            html.Div([dcc.Dropdown(hours, placeholder=hour, value=hour, style=picker_style, id='dropdown-hour'),
                                    dcc.Store(id='store-hour'),
                                    html.Span(':'),
                                    dcc.Dropdown(minutes, placeholder=minute, value=minute, style=picker_style, id='dropdown-minute'),
                                    dcc.Store(id='store-minute')],
                                style={'border': '1px solid goldenrod',
                                    'height': '34px',
                                    'width': '76px',
                                    'display': 'flex',
                                    'align-items': 'center',
                                },
                            ),
                        ], style={'font-family': 'Sans'},
                    ),
                ], width={'size': 'auto'}),
            dbc.Col([dmc.Divider(orientation='vertical', size=2, color='goldenrod', style={'height': 82})], width={'size': 'auto'}),
            dbc.Col([dbc.Label('Average pace (km/h)'), html.Div(dcc.Slider(3, 6.5, 0.5, value=speed, id='slider-pace'), style={'width': '272px'}), dcc.Store(id='store-pace')], width={'size': 'auto'}),
            dbc.Col([dmc.Divider(orientation='vertical', size=2, color='goldenrod', style={'height': 82})], width={'size': 'auto'}),
            dbc.Col([dbc.Label('Forecast frequency (km)'), html.Div(dcc.Slider(1, 5, 1, value=frequency, id='slider-freq'), style={'width': '170px'}), dcc.Store(id='store-freq')], width={'size': 'auto'}),
            dbc.Col([dmc.Divider(orientation='vertical', size=2, color='goldenrod', style={'height': 82})], width={'size': 'auto'}),
            dbc.Col([html.Br(), html.Button('Forecast', id='submit-forecast', n_clicks=0,
                                            style={'width': '86px', 'height': '36px', 'background-color': 'goldenrod', 'font-weight': 'bold', 'color': 'white'})],
            width={'size': 'auto'}),
            ]),
        ], style={'font-size': 13, 'font-family': 'sans'}),
        html.Div([html.Br(),
        dbc.Row([dbc.Col(html.Div('Sunrise '), width={'size': 'auto', 'offset': 9}),
                dbc.Col(html.Img(src=sunrise_icon, style={'height':'42px'}), width={'size': 'auto'}),
                dbc.Col(html.Div(id='sunrise-time'), width={'size': 'auto'}),
                dbc.Col([dmc.Divider(orientation='vertical', size=2, color='goldenrod', style={'height': 22})], width={'size': 'auto'}),
                dbc.Col(html.Div('Sunset '), width={'size': 'auto', 'offset': 0}),
                dbc.Col(html.Img(src=sunset_icon, style={'height':'42px'}), width={'size': 'auto'}),
                dbc.Col(html.Div(id='sunset-time'), width={'size': 'auto'})]),
        ], style={'font-size': 13, 'font-family': 'sans'}),
        html.Div(id='datatable-div'),
        html.Div([dcc.Graph(id='base-figure', clear_on_unhover=True, style={'height': '90vh'})], id='base-figure-div'),
        dcc.Tooltip(id='figure-tooltip'),
        html.Div([dcc.Link('Freedom Luxembourg', href='https://www.freeletz.lu/freeletz/',
                target='_blank', style={'color': 'goldenrod', 'font-size': 15, 'font-family': 'sans', 'text-decoration': 'none'}),
        ], style={'text-align': 'center'},),
        html.Div([dcc.Link('Powered by Open Meteo', href='https://open-meteo.com/',
                target='_blank', style={'color': 'darkslategray', 'font-size': 13, 'font-family': 'sans', 'text-decoration': 'none'}),
        ], style={'text-align': 'center'}),
        dcc.Interval(
                    id='interval-component',
                    interval=6 * 60 * 60 * 1000,
                    n_intervals=0),
    ], id='layout-content')

    layout = dmc.MantineProvider(layout)

    return layout

app.layout = serve_layout

# Callbacks

@callback(Output('store-gpx', 'data'),
          Output('name-gpx', 'children'),
    Input('upload-gpx', 'contents'),
    State('upload-gpx', 'filename'))
def update_gpx(contents, filename):
    if filename:
        try:
            igpx = filename
            message = html.Div(['Upload your GPX track ', html.H6(igpx, style={'color': 'darkslategray', 'font-size': 12, 'font-weight': 'bold'})])
            content_type, content_string = contents.split(',')
            decoded = base64.b64decode(content_string)
            gpx_parsed = gpxpy.parse(decoded)
            # Convert to a dataframe one point at a time.
            points = []
            for track in gpx_parsed.tracks:
                for segment in track.segments:
                    for p in segment.points:
                        points.append({
                            'latitude': p.latitude,
                            'longitude': p.longitude,
                            'altitude': p.elevation,
                    })
            df_gpx = pd.DataFrame.from_records(points)
        except Exception:
            igpx = 'default_gpx.gpx'
            message = html.Div(['Upload your GPX track ', html.H6('The GPX cannot be parsed. Please, upload another file.', style={'color': 'darkslategray', 'font-size': 12, 'font-weight': 'bold'})])
            df_gpx = Converter(input_file = igpx).gpx_to_dataframe()
    else:
        igpx = 'default_gpx.gpx'
        message = html.Div(['Upload your GPX track ', html.H6(igpx, style={'color': 'darkslategray', 'font-size': 12, 'font-weight': 'bold'})])
        df_gpx = Converter(input_file = igpx).gpx_to_dataframe()

    return df_gpx.to_dict('records'), message

@callback(Output('store-date', 'data'),
    Input('calendar-date', 'date'))
def update_date(value):
    if value:
        cdate = value
    else:
        cdate = hdate
    return cdate

@callback(Output('store-hour', 'data'),
    Input('dropdown-hour', 'value'))
def update_hour(value):
    if value:
        hour = value
    else:
        hour = hour
    return hour

@callback(Output('store-minute', 'data'),
    Input('dropdown-minute', 'value'))
def update_minute(value):
    if value:
        minute = value
    else:
        minute = minute
    return minute

@callback(Output('store-freq', 'data'),
    Input('slider-freq', 'value'))
def update_freq(value):
    if value:
        frequency = value
    else:
        frequency = frequency
    return frequency

@callback(Output('store-pace', 'data'),
    Input('slider-pace', 'value'))
def update_pace(value):
    if value:
        speed = value
    else:
        speed = speed
    return speed

@callback(Output('sunrise-time', 'children'),
          Output('sunset-time', 'children'),
          Output('datatable-div', 'children'),
          Output('base-figure-div', 'children'),
    Input('submit-forecast', 'n_clicks'),
    State('store-gpx', 'data'),
    State('store-date', 'data'),
    State('store-hour', 'data'),
    State('store-minute', 'data'),
    State('store-freq', 'data'),
    State('store-pace', 'data'),
    prevent_initial_call=False)
def weather_forecast(n_clicks, gpx_json, cdate, h, m, freq, pace):

    global df_wp
    global hdate
    global hour
    global minute
    global time
    global frequency
    global granularity
    global speed

    if cdate:
        hdate = cdate

    if h:
        hour = h

    if m:
        minute = m
    time = hour + ':' + minute

    if freq:
        frequency = freq
    granularity = frequency * 1000

    if pace:
        speed = pace

    if not gpx_json:
        igpx = 'default_gpx.gpx'
        df_gpx = Converter(input_file = igpx).gpx_to_dataframe()
        gpx_json = df_gpx.to_dict('records')

    if n_clicks >=0:

        gpx_df = pd.DataFrame.from_records(gpx_json)

        df_gpx, df_wp, dfs, sunrise, sunset, centre_lat, centre_lon = parse_gpx(gpx_df, hdate)

        sunrise_div = html.Div([sunrise])
        sunset_div = html.Div([sunset])

        table_div = html.Div([dash_table.DataTable(id='datatable-display',
            markdown_options = {'html': True},
            columns=[{'name': i, 'id': i, 'deletable': False, 'selectable': False, 'presentation': 'markdown'} for i in dfs.columns],
            data=dfs.to_dict('records'),
            editable=False,
            row_deletable=False,
            style_as_list_view=True,
            style_cell={'fontSize': '12px', 'text-align': 'center', 'margin-bottom':'0'},
            css=[dict(selector= 'p', rule= 'margin: 0; text-align: center')],
            style_header={'backgroundColor': 'goldenrod', 'color': 'white', 'fontWeight': 'bold'})
            ])

        fig = plot_fig(df_gpx, df_wp, centre_lat, centre_lon)

        figure_div = html.Div([dcc.Graph(id='base-figure', figure=fig, clear_on_unhover=True, style={'height': '90vh'})])

        return sunrise_div, sunset_div, table_div, figure_div

@callback(Output('figure-tooltip', 'show'),
    Output('figure-tooltip', 'bbox'),
    Output('figure-tooltip', 'children'),
    Input('base-figure', 'hoverData'))
def display_hover(hoverData):

    if hoverData is None:
        return False, no_update, no_update

    pt = hoverData['points'][0]
    bbox = pt['bbox']
    num = pt['pointNumber']

    df_row = df_wp.iloc[num].copy()
    img_src = df_row['Weather']
    txt_src = df_row['dist_read']

    children = [html.Div([html.Img(src=img_src, style={'width': '100%'}), Purify(txt_src),],
                         style={'width': '128px', 'white-space': 'normal'})]

    return True, bbox, children

@callback(Output('layout-content', 'children'),
        [Input('interval-component', 'n_intervals')])
def refresh_layout(n):
    layout = serve_layout()
    return layout

if __name__ == '__main__':
    app.run(debug=False, host='0.0.0.0', port=7860)