Spaces:
Running
Running
File size: 13,828 Bytes
1229c2b 5eda809 1229c2b 5e51ac9 1229c2b ae4922d 1229c2b ae4922d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import json
import pytz
import numpy as np
import pandas as pd
from geopy import distance
import plotly.graph_objects as go
from gpx_converter import Converter
from sunrisesunset import SunriseSunset
from datetime import datetime, timedelta
from beaufort_scale.beaufort_scale import beaufort_scale_kmh
from timezonefinder import TimezoneFinder
tf = TimezoneFinder()
from dash import Dash, dcc, html, dash_table, Input, Output, no_update, callback
import dash_bootstrap_components as dbc
from dash_extensions import Purify
import srtm
elevation_data = srtm.get_data()
import requests_cache
import openmeteo_requests
from retry_requests import retry
### VARIABLES ###
# Variables to become widgets
igpx = 'default_gpx.gpx'
date = '2024-12-29'
time = '10:55'
speed = 4.0
granularity = 2000
# Setup the Open Meteo API client with cache and retry on error
cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
openmeteo = openmeteo_requests.Client(session = retry_session)
# Open Meteo weather forecast API
url = 'https://api.open-meteo.com/v1/forecast'
params = {
'timezone': 'auto',
'minutely_15': ['temperature_2m', 'rain', 'wind_speed_10m', 'weather_code', 'is_day'],
'hourly': ['rain'],
}
# Load the JSON files mapping weather codes to descriptions and icons
with open('weather_icons_custom.json', 'r') as file:
icons = json.load(file)
# Weather icons URL
icon_url = 'https://raw.githubusercontent.com/basmilius/weather-icons/refs/heads/dev/production/fill/svg/'
sunrise_icon = icon_url + 'sunrise.svg'
sunset_icon = icon_url + 'sunset.svg'
### FUNCTIONS ###
# Sunrise sunset
def sunrise_sunset(lat_start, lon_start, lat_end, lon_end, date):
tz = tf.timezone_at(lng=lon_start, lat=lat_start)
zone = pytz.timezone(tz)
day = datetime.strptime(date, '%Y-%m-%d')
dt = day.astimezone(zone)
rs_start = SunriseSunset(dt, lat=lat_start, lon=lon_start, zenith='official')
rise_time = rs_start.sun_rise_set[0]
rs_end = SunriseSunset(dt, lat=lat_end, lon=lon_end, zenith='official')
set_time = rs_end.sun_rise_set[1]
sunrise = rise_time.strftime('%H:%M')
sunset = set_time.strftime('%H:%M')
return sunrise, sunset
# Map weather codes to descriptions and icons
def map_icons(df):
code = df['weather_code']
if df['is_day'] == 1:
icon = icons[str(code)]['day']['icon']
description = icons[str(code)]['day']['description']
elif df['is_day'] == 0:
icon = icons[str(code)]['night']['icon']
description = icons[str(code)]['night']['description']
df['Weather'] = icon_url + icon
df['Weather outline'] = description
return df
# Quantitative pluviometry to natural language
def rain_intensity(precipt):
if precipt >= 50:
rain = 'Extreme rain'
elif 50 < precipt <= 16:
rain = 'Very heavy rain'
elif 4 <= precipt < 16:
rain = 'Heavy rain'
elif 1 <= precipt < 4:
rain = 'Moderate rain'
elif 0.25 <= precipt < 1:
rain = 'Light rain'
elif 0 < precipt < 0.25:
rain = 'Light drizzle'
else:
rain = 'No rain / No info'
return rain
# Function to add elevation
def add_ele(row):
if pd.isnull(row['altitude']):
row['altitude'] = elevation_data.get_elevation(row['latitude'], row['longitude'], 0)
else:
row['altitude'] = row['altitude']
return row
# Compute distances using the Karney algorith with Euclidian altitude correction
def eukarney(lat1, lon1, alt1, lat2, lon2, alt2):
p1 = (lat1, lon1)
p2 = (lat2, lon2)
karney = distance.distance(p1, p2).m
return np.sqrt(karney**2 + (alt2 - alt1)**2)
# Obtain the weather forecast for each waypoint at each specific time
def get_weather(df_wp):
params['latitude'] = df_wp['latitude']
params['longitude'] = df_wp['longitude']
params['elevation'] = df_wp['longitude']
start_dt = datetime.strptime(date + 'T' + time, '%Y-%m-%dT%H:%M')
delta_dt = start_dt + timedelta(seconds=df_wp['seconds'])
delta_read = delta_dt.strftime('%Y-%m-%dT%H:%M')
start_period = (delta_dt - timedelta(seconds=1800)).strftime('%Y-%m-%dT%H:%M')
end_period = (delta_dt + timedelta(seconds=1800)).strftime('%Y-%m-%dT%H:%M')
time_read = delta_dt.strftime('%H:%M')
df_wp['Time'] = time_read
params['start_minutely_15'] = delta_read
params['end_minutely_15'] = delta_read
params['start_hour'] = delta_read
params['end_hour'] = delta_read
responses = openmeteo.weather_api(url, params=params)
# Process first location. Add a for-loop for multiple locations or weather models
response = responses[0]
# Process hourly data. The order of variables needs to be the same as requested.
minutely = response.Minutely15()
hourly = response.Hourly()
minutely_temperature_2m = minutely.Variables(0).ValuesAsNumpy()[0]
rain = hourly.Variables(0).ValuesAsNumpy()[0]
minutely_wind_speed_10m = minutely.Variables(2).ValuesAsNumpy()[0]
weather_code = minutely.Variables(3).ValuesAsNumpy()[0]
is_day = minutely.Variables(4).ValuesAsNumpy()[0]
df_wp['Temp (°C)'] = minutely_temperature_2m
df_wp['weather_code'] = weather_code
df_wp['is_day'] = is_day
v_rain_intensity = np.vectorize(rain_intensity)
df_wp['Rain level'] = v_rain_intensity(rain)
v_beaufort_scale_kmh = np.vectorize(beaufort_scale_kmh)
df_wp['Wind level'] = v_beaufort_scale_kmh(minutely_wind_speed_10m, language='en')
df_wp['Rain (mm/h)'] = rain.round(1)
df_wp['Wind (km/h)'] = minutely_wind_speed_10m.round(1)
return df_wp
# Parse the GPX track
def parse_gpx(igpx):
global centre_lat
global centre_lon
global sunrise
global sunset
df_gpx = Converter(input_file = igpx).gpx_to_dataframe()
# Sunrise sunset
lat_start, lon_start = df_gpx[['latitude', 'longitude']].head(1).values.flatten().tolist()
lat_end, lon_end = df_gpx[['latitude', 'longitude']].tail(1).values.flatten().tolist()
sunrise, sunset = sunrise_sunset(lat_start, lon_start, lat_end, lon_end, date)
df_gpx = df_gpx.apply(lambda x: add_ele(x), axis=1)
centre_lat = (df_gpx['latitude'].max() + df_gpx['latitude'].min()) / 2
centre_lon = (df_gpx['longitude'].max() + df_gpx['longitude'].min()) / 2
# Create shifted columns in order to facilitate distance calculation
df_gpx['lat_shift'] = df_gpx['latitude'].shift(periods=-1).fillna(df_gpx['latitude'])
df_gpx['lon_shift'] = df_gpx['longitude'].shift(periods=-1).fillna(df_gpx['longitude'])
df_gpx['alt_shift'] = df_gpx['altitude'].shift(periods=-1).fillna(df_gpx['altitude'])
# Apply the distance function to the dataframe
df_gpx['distances'] = df_gpx.apply(lambda x: eukarney(x['latitude'], x['longitude'], x['altitude'], x['lat_shift'], x['lon_shift'], x['alt_shift']), axis=1).fillna(0)
df_gpx['distance'] = df_gpx['distances'].cumsum().round(decimals = 0).astype(int)
df_gpx = df_gpx.drop(columns=['lat_shift', 'lon_shift', 'alt_shift', 'distances'])
start = df_gpx['distance'].min()
finish = df_gpx['distance'].max()
dist_rang = list(range(start, finish, granularity))
dist_rang.append(finish)
way_list = []
for waypoint in dist_rang:
gpx_dict = df_gpx.iloc[(df_gpx.distance - waypoint).abs().argsort()[:1]].to_dict('records')[0]
way_list.append(gpx_dict)
df_wp = pd.DataFrame(way_list)
df_wp['seconds'] = df_wp['distance'].apply(lambda x: int(round(x / (speed * (5/18)), 0)))
df_wp = df_wp.apply(lambda x: get_weather(x), axis=1)
df_wp['Temp (°C)'] = df_wp['Temp (°C)'].round(0).astype(int).astype(str) + '°C'
df_wp['is_day'] = df_wp['is_day'].astype(int)
df_wp['weather_code'] = df_wp['weather_code'].astype(int)
df_wp = df_wp.apply(map_icons, axis=1)
df_wp['Rain level'] = df_wp['Rain level'].astype(str)
df_wp['Wind level'] = df_wp['Wind level'].astype(str)
df_wp['dist_read'] = ('<p style="font-family:sans; font-size:14px;"><b>' +
df_wp['Weather outline'] + '</b><br><br>' +
df_wp['Temp (°C)'] + '<br><br>' +
df_wp['Rain level'] + '<br>' +
df_wp['Wind level'] + '<br><br>' +
df_wp['Time'] + '<br><br>' +
df_wp['distance'].apply(lambda x: str(int(round(x / 1000, 0)))).astype(str) + ' km | ' + df_wp['altitude'].round(0).astype(int).astype(str) + ' m</p>')
df_wp = df_wp.reset_index(drop=True)
df_wp['Waypoint'] = df_wp.index
dfs = df_wp[['Waypoint', 'Time', 'Weather', 'Weather outline', 'Temp (°C)', 'Rain (mm/h)', 'Rain level', 'Wind (km/h)', 'Wind level']].copy()
dfs['Wind (km/h)'] = dfs['Wind (km/h)'].round(1).astype(str).replace('0.0', '')
dfs['Rain (mm/h)'] = dfs['Rain (mm/h)'].round(1).astype(str).replace('0.0', '')
dfs['Temp (°C)'] = dfs['Temp (°C)'].str.replace('C', '')
dfs['Weather'] = '<img style="float: right; padding: 0; margin: -6px; display: block;" width=48px; src=' + dfs['Weather'] + '>'
return [df_gpx, df_wp, dfs]
df_gpx, df_wp, dfs = parse_gpx(igpx)
### PLOTS ###
# Plot map
fig = go.Figure()
fig.add_trace(go.Scattermap(lon=df_gpx['longitude'],
lat=df_gpx['latitude'],
mode='lines', line=dict(width=4, color='firebrick'),
name='gpx_trace'))
fig.add_trace(go.Scattermap(lon=df_wp['longitude'],
lat=df_wp['latitude'],
mode='markers+text', marker=dict(size=24, color='firebrick', opacity=0.8, symbol='circle'),
textfont=dict(color='white', weight='bold'),
text=df_wp.index.astype(str),
name='wp_trace'))
fig.update_layout(map_style='open-street-map',
map=dict(center=dict(lat=centre_lat, lon=centre_lon), zoom=12))
fig.update_traces(showlegend=False, hoverinfo='none', hovertemplate=None, selector=({'name': 'wp_trace'}))
fig.update_traces(showlegend=False, hoverinfo='skip', hovertemplate=None, selector=({'name': 'gpx_trace'}))
### DASH APP ###
external_stylesheets = [dbc.themes.BOOTSTRAP]
app = Dash(__name__, external_stylesheets=external_stylesheets)
server = app.server
# Callbacks
@callback(Output('graph-tooltip', 'show'),
Output('graph-tooltip', 'bbox'),
Output('graph-tooltip', 'children'),
Input('graph-basic-2', 'hoverData'))
def display_hover(hoverData):
if hoverData is None:
return False, no_update, no_update
pt = hoverData['points'][0]
bbox = pt['bbox']
num = pt['pointNumber']
df_row = df_wp.iloc[num]
img_src = df_row['Weather']
txt_src = df_row['dist_read']
children = [html.Div([html.Img(src=img_src, style={'width': '100%'}), Purify(txt_src),],
style={'width': '128px', 'white-space': 'normal'})]
return True, bbox, children
# Layout
def serve_layout():
layout = html.Div([
html.Div([dcc.Link('The Weather for Hikers', href='.',
style={'color': 'darkslategray', 'font-size': 20, 'font-family': 'sans', 'font-weight': 'bold', 'text-decoration': 'none'}),
]),
html.Div([dcc.Link('Freedom Luxembourg', href='https://www.freeletz.lu/freeletz/',
target='_blank', style={'color': 'goldenrod', 'font-size': 15, 'font-family': 'sans', 'text-decoration': 'none'}),
]),
html.Div([html.Br(),
dbc.Row([dbc.Col(html.Div('Sunrise '), width={'size': 'auto', 'offset': 4}),
dbc.Col(html.Img(src=sunrise_icon, style={'height':'42px'}), width={'size': 'auto'}),
dbc.Col(html.Div(sunrise), width={'size': 'auto'}),
dbc.Col(html.Div('Sunset '), width={'size': 'auto', 'offset': 1}),
dbc.Col(html.Img(src=sunset_icon, style={'height':'42px'}), width={'size': 'auto'}),
dbc.Col(html.Div(sunset), width={'size': 'auto'})]),
], style={'font-size': 13, 'font-family': 'sans'}),
html.Div([dash_table.DataTable(
id='datatable-interactivity', markdown_options = {'html': True},
columns=[{'name': i, 'id': i, 'deletable': False, 'selectable': False, 'presentation': 'markdown'} for i in dfs.columns],
data=dfs.to_dict('records'),
editable=False,
row_deletable=False,
style_as_list_view=True,
style_cell={'fontSize': '12px', 'text-align': 'center', 'margin-bottom':'0'},
css=[dict(selector= 'p', rule= 'margin: 0; text-align: center')],
style_header={'backgroundColor': 'goldenrod', 'color': 'white', 'fontWeight': 'bold'}),
dcc.Graph(id='graph-basic-2', figure=fig, clear_on_unhover=True, style={'height': '90vh'}),
dcc.Tooltip(id='graph-tooltip'),
]),
html.Div([dcc.Link('Freedom Luxembourg', href='https://www.freeletz.lu/freeletz/',
target='_blank', style={'color': 'goldenrod', 'font-size': 15, 'font-family': 'sans', 'text-decoration': 'none'}),
], style={'text-align': 'center'},),
html.Div([dcc.Link('Powered by Open Meteo', href='https://open-meteo.com/',
target='_blank', style={'color': 'black', 'font-size': 13, 'font-family': 'sans', 'text-decoration': 'none'}),
], style={'text-align': 'center'}),
dcc.Interval(
id='interval-component',
interval=6 * 60 * 60 * 1000,
n_intervals=0),
], id='layout-content')
return layout
app.layout = serve_layout
@callback(Output('layout-content', 'children'),
[Input('interval-component', 'n_intervals')])
def refresh_layout(n):
layout = serve_layout()
return layout
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=7860)
|