File size: 13,281 Bytes
1229c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import json
import pytz
import numpy as np
import pandas as pd
from geopy import distance
import plotly.graph_objects as go
from gpx_converter import Converter
from sunrisesunset import SunriseSunset
from datetime import datetime, timedelta
from beaufort_scale.beaufort_scale import beaufort_scale_kmh
from timezonefinder import TimezoneFinder
tf = TimezoneFinder()

from dash import Dash, dcc, html, dash_table, Input, Output, no_update, callback
import dash_bootstrap_components as dbc
from dash_extensions import Purify

import srtm
elevation_data = srtm.get_data()

import requests_cache
import openmeteo_requests
from retry_requests import retry

### VARIABLES ###

# Variables to become widgets
igpx = 'default_gpx.gpx'
date = '2024-12-22'
time = '10:15'
speed = 4.0
granularity = 2000

# Setup the Open Meteo API client with cache and retry on error
cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
openmeteo = openmeteo_requests.Client(session = retry_session)

# Open Meteo weather forecast API
url = 'https://api.open-meteo.com/v1/forecast'
params = {
	'timezone': 'auto',
	'minutely_15': ['temperature_2m', 'rain', 'wind_speed_10m', 'weather_code', 'is_day'],
	'hourly': ['rain'],
}

# Load the JSON files mapping weather codes to descriptions and icons
with open('weather_icons_custom.json', 'r') as file:
	icons = json.load(file)

# Weather icons URL
icon_url = 'https://raw.githubusercontent.com/basmilius/weather-icons/refs/heads/dev/production/fill/svg/'
sunrise_icon = icon_url + 'sunrise.svg'
sunset_icon = icon_url + 'sunset.svg'

### FUNCTIONS ###

# Sunrise sunset
def sunrise_sunset(lat_start, lon_start, lat_end, lon_end, date):

    tz = tf.timezone_at(lng=lon_start, lat=lat_start)
    zone = pytz.timezone(tz)

    day = datetime.strptime(date, '%Y-%m-%d')

    dt = day.astimezone(zone)

    rs_start = SunriseSunset(dt, lat=lat_start, lon=lon_start, zenith='official')
    rise_time = rs_start.sun_rise_set[0]

    rs_end = SunriseSunset(dt, lat=lat_end, lon=lon_end, zenith='official')
    set_time = rs_end.sun_rise_set[1]

    sunrise = rise_time.strftime('%H:%M')
    sunset = set_time.strftime('%H:%M')

    return sunrise, sunset

# Map weather codes to descriptions and icons
def map_icons(df):
	code = df['weather_code']

	if df['is_day'] == 1:
		icon = icons[str(code)]['day']['icon']
		description = icons[str(code)]['day']['description']
	elif df['is_day'] == 0:
		icon = icons[str(code)]['night']['icon']
		description = icons[str(code)]['night']['description']

	df['Weather'] = icon_url + icon
	df['Weather outline'] = description

	return df

# Quantitative pluviometry to natural language
def rain_intensity(precipt):
    if precipt >= 50:
        rain = 'Extreme rain'
    elif 50  < precipt <= 16:
        rain = 'Very heavy rain'
    elif 4  <= precipt < 16:
        rain = 'Heavy rain'
    elif 1  <= precipt < 4:
        rain = 'Moderate rain'
    elif 0.25  <= precipt < 1:
        rain = 'Light rain'
    elif 0 < precipt < 0.25:
        rain = 'Light drizzle'
    else:
        rain = 'No rain / No info'
    return rain

# Function to add elevation
def add_ele(row):
    if pd.isnull(row['altitude']):
        row['altitude'] = elevation_data.get_elevation(row['latitude'], row['longitude'], 0)
    else:
        row['altitude'] = row['altitude']
    return row

# Compute distances using the Karney algorith with Euclidian altitude correction
def eukarney(lat1, lon1, alt1, lat2, lon2, alt2):
    p1 = (lat1, lon1)
    p2 = (lat2, lon2)
    karney = distance.distance(p1, p2).m
    return np.sqrt(karney**2 + (alt2 - alt1)**2)

# Obtain the weather forecast for each waypoint at each specific time
def get_weather(df_wp):

    params['latitude'] = df_wp['latitude']
    params['longitude'] = df_wp['longitude']
    params['elevation'] = df_wp['longitude']

    start_dt = datetime.strptime(date + 'T' + time, '%Y-%m-%dT%H:%M')

    delta_dt = start_dt + timedelta(seconds=df_wp['seconds'])
    delta_read = delta_dt.strftime('%Y-%m-%dT%H:%M')

    start_period = (delta_dt - timedelta(seconds=1800)).strftime('%Y-%m-%dT%H:%M')
    end_period = (delta_dt + timedelta(seconds=1800)).strftime('%Y-%m-%dT%H:%M')

    time_read = delta_dt.strftime('%H:%M')

    df_wp['Time'] = time_read

    params['start_minutely_15'] = delta_read
    params['end_minutely_15'] = delta_read
    params['start_hour'] = delta_read
    params['end_hour'] = delta_read

    responses = openmeteo.weather_api(url, params=params)

    # Process first location. Add a for-loop for multiple locations or weather models
    response = responses[0]

    # Process hourly data. The order of variables needs to be the same as requested.
    minutely = response.Minutely15()
    hourly = response.Hourly()

    minutely_temperature_2m = minutely.Variables(0).ValuesAsNumpy()[0]
    rain = hourly.Variables(0).ValuesAsNumpy()[0]
    minutely_wind_speed_10m = minutely.Variables(2).ValuesAsNumpy()[0]
    weather_code = minutely.Variables(3).ValuesAsNumpy()[0]
    is_day = minutely.Variables(4).ValuesAsNumpy()[0]

    df_wp['Temp (°C)'] = minutely_temperature_2m
    df_wp['weather_code'] = weather_code
    df_wp['is_day'] = is_day

    v_rain_intensity = np.vectorize(rain_intensity)
    df_wp['Rain level'] = v_rain_intensity(rain)

    v_beaufort_scale_kmh = np.vectorize(beaufort_scale_kmh)

    df_wp['Wind level'] = v_beaufort_scale_kmh(minutely_wind_speed_10m, language='en')

    df_wp['Rain (mm/h)'] = rain.round(1)
    df_wp['Wind (km/h)'] = minutely_wind_speed_10m.round(1)

    return df_wp

# Parse the GPX track
def parse_gpx(igpx):

    global centre_lat
    global centre_lon
    global sunrise
    global sunset

    df_gpx = Converter(input_file = igpx).gpx_to_dataframe()

    # Sunrise sunset

    lat_start, lon_start = df_gpx[['latitude', 'longitude']].head(1).values.flatten().tolist()
    lat_end, lon_end = df_gpx[['latitude', 'longitude']].tail(1).values.flatten().tolist()

    sunrise, sunset = sunrise_sunset(lat_start, lon_start, lat_end, lon_end, date)

    df_gpx = df_gpx.apply(lambda x: add_ele(x), axis=1)

    centre_lat = (df_gpx['latitude'].max() + df_gpx['latitude'].min()) / 2
    centre_lon = (df_gpx['longitude'].max() + df_gpx['longitude'].min()) / 2

    # Create shifted columns in order to facilitate distance calculation

    df_gpx['lat_shift'] = df_gpx['latitude'].shift(periods=-1).fillna(df_gpx['latitude'])
    df_gpx['lon_shift'] = df_gpx['longitude'].shift(periods=-1).fillna(df_gpx['longitude'])
    df_gpx['alt_shift'] = df_gpx['altitude'].shift(periods=-1).fillna(df_gpx['altitude'])

    # Apply the distance function to the dataframe

    df_gpx['distances'] = df_gpx.apply(lambda x: eukarney(x['latitude'], x['longitude'], x['altitude'], x['lat_shift'], x['lon_shift'], x['alt_shift']), axis=1).fillna(0)
    df_gpx['distance'] = df_gpx['distances'].cumsum().round(decimals = 0).astype(int)

    df_gpx = df_gpx.drop(columns=['lat_shift', 'lon_shift', 'alt_shift', 'distances'])

    start = df_gpx['distance'].min()
    finish = df_gpx['distance'].max()

    dist_rang = list(range(start, finish, granularity))
    dist_rang.append(finish)

    way_list = []
    for waypoint in dist_rang:
        gpx_dict = df_gpx.iloc[(df_gpx.distance - waypoint).abs().argsort()[:1]].to_dict('records')[0]
        way_list.append(gpx_dict)

    df_wp = pd.DataFrame(way_list)

    df_wp['seconds'] = df_wp['distance'].apply(lambda x: int(round(x / (speed * (5/18)), 0)))

    df_wp = df_wp.apply(lambda x: get_weather(x), axis=1)

    df_wp['Temp (°C)'] = df_wp['Temp (°C)'].round(0).astype(int).astype(str) + '°C'
    df_wp['is_day'] = df_wp['is_day'].astype(int)
    df_wp['weather_code'] = df_wp['weather_code'].astype(int)
    df_wp = df_wp.apply(map_icons, axis=1)

    df_wp['Rain level'] = df_wp['Rain level'].astype(str)
    df_wp['Wind level'] = df_wp['Wind level'].astype(str)

    df_wp['dist_read'] = ('<p style="font-family:sans; font-size:14px;"><b>' +
                        df_wp['Weather outline'] + '</b><br><br>' +
                        df_wp['Temp (°C)'] + '<br><br>' +
                        df_wp['Rain level'] + '<br>' +
                        df_wp['Wind level'] + '<br><br>' +
                        df_wp['Time'] + '<br><br>' +
                        df_wp['distance'].apply(lambda x: str(int(round(x / 1000, 0)))).astype(str) + ' km | ' + df_wp['altitude'].round(0).astype(int).astype(str) + ' m</p>')

    df_wp = df_wp.reset_index(drop=True)

    df_wp['Waypoint'] = df_wp.index

    dfs = df_wp[['Waypoint', 'Time', 'Weather', 'Weather outline', 'Temp (°C)', 'Rain (mm/h)', 'Rain level', 'Wind (km/h)', 'Wind level']].copy()

    dfs['Wind (km/h)'] = dfs['Wind (km/h)'].round(1).astype(str).replace('0.0', '')
    dfs['Rain (mm/h)'] = dfs['Rain (mm/h)'].round(1).astype(str).replace('0.0', '')
    dfs['Temp (°C)'] = dfs['Temp (°C)'].str.replace('C', '')

    dfs['Weather'] = '<img style="float: right; padding: 0; margin: -6px; display: block;" width=48px; src=' + dfs['Weather'] + '>'

    return [df_gpx, df_wp, dfs]

df_gpx, df_wp, dfs = parse_gpx(igpx)

### PLOTS ###

# Plot map

fig = go.Figure()

fig.add_trace(go.Scattermap(lon=df_gpx['longitude'],
                 lat=df_gpx['latitude'],
                 mode='lines', line=dict(width=4, color='firebrick'),
                 name='gpx_trace'))

fig.add_trace(go.Scattermap(lon=df_wp['longitude'],
                 lat=df_wp['latitude'],
                 mode='markers+text', marker=dict(size=24, color='firebrick', opacity=0.8, symbol='circle'),
                 textfont=dict(color='white', weight='bold'),
                 text=df_wp.index.astype(str),
                 name='wp_trace'))

fig.update_layout(map_style='open-street-map',
    map=dict(center=dict(lat=centre_lat, lon=centre_lon), zoom=12))

fig.update_traces(showlegend=False, hoverinfo='none', hovertemplate=None, selector=({'name': 'wp_trace'}))
fig.update_traces(showlegend=False, hoverinfo='skip', hovertemplate=None, selector=({'name': 'gpx_trace'}))


### DASH APP ###

external_stylesheets = [dbc.themes.BOOTSTRAP]

app = Dash(__name__, external_stylesheets=external_stylesheets)

# Callbacks

@callback(Output('graph-tooltip', 'show'),
    Output('graph-tooltip', 'bbox'),
    Output('graph-tooltip', 'children'),
    Input('graph-basic-2', 'hoverData'))
def display_hover(hoverData):

    if hoverData is None:
        return False, no_update, no_update

    pt = hoverData['points'][0]
    bbox = pt['bbox']
    num = pt['pointNumber']

    df_row = df_wp.iloc[num]
    img_src = df_row['Weather']
    txt_src = df_row['dist_read']

    children = [html.Div([html.Img(src=img_src, style={'width': '100%'}), Purify(txt_src),],
                         style={'width': '128px', 'white-space': 'normal'})]

    return True, bbox, children

# Layout

app.layout = html.Div([
    html.Div([dcc.Link('The Weather for Hikers', href='.',
            style={'color': 'darkslategray', 'font-size': 20, 'font-family': 'sans', 'font-weight': 'bold', 'text-decoration': 'none'}),
    ]),
    html.Div([dcc.Link('Freedom Luxembourg', href='https://www.freeletz.lu/freeletz/',
            target='_blank', style={'color': 'goldenrod', 'font-size': 15, 'font-family': 'sans', 'text-decoration': 'none'}),
    ]),
    html.Div([html.Br(),
    dbc.Row([dbc.Col(html.Div('Sunrise '), width={'size': 'auto', 'offset': 4}),
             dbc.Col(html.Img(src=sunrise_icon, style={'height':'42px'}), width={'size': 'auto'}),
             dbc.Col(html.Div(sunrise), width={'size': 'auto'}),
             dbc.Col(html.Div('Sunset '), width={'size': 'auto', 'offset': 1}),
             dbc.Col(html.Img(src=sunset_icon, style={'height':'42px'}), width={'size': 'auto'}),
             dbc.Col(html.Div(sunset), width={'size': 'auto'})]),
    ], style={'font-size': 13, 'font-family': 'sans'}),
    html.Div([dash_table.DataTable(
        id='datatable-interactivity', markdown_options = {'html': True},
        columns=[{'name': i, 'id': i, 'deletable': False, 'selectable': False, 'presentation': 'markdown'} for i in dfs.columns],
        data=dfs.to_dict('records'),
        editable=False,
        row_deletable=False,
        style_as_list_view=True,
        style_cell={'fontSize': '12px', 'text-align': 'center', 'margin-bottom':'0'},
        css=[dict(selector= 'p', rule= 'margin: 0; text-align: center')],
        style_header={'backgroundColor': 'goldenrod', 'color': 'white', 'fontWeight': 'bold'}),
    dcc.Graph(id='graph-basic-2', figure=fig, clear_on_unhover=True, style={'height': '90vh'}),
    dcc.Tooltip(id='graph-tooltip'),
    ]),
    html.Div([dcc.Link('Freedom Luxembourg', href='https://www.freeletz.lu/freeletz/',
            target='_blank', style={'color': 'goldenrod', 'font-size': 15, 'font-family': 'sans', 'text-decoration': 'none'}),
    ], style={'text-align': 'center'},),
    html.Div([dcc.Link('Powered by Open Meteo', href='https://open-meteo.com/',
            target='_blank', style={'color': 'black', 'font-size': 13, 'font-family': 'sans', 'text-decoration': 'none'}),
    ], style={'text-align': 'center'},)
])


# Light up server

if __name__ == '__main__':
    app.run(debug=False, host='0.0.0.0', port=7860)