import torch import torch.nn as nn import torch.nn.functional as F import pytorch_lightning as pl from transformers import AutoModel, AutoConfig from transformers import Wav2Vec2Model, Wav2Vec2Processor, Data2VecAudioModel import torchmetrics class cnnblock(nn.Module): def __init__(self, embed_dim=512): super(cnnblock, self).__init__() self.conv_block = nn.Sequential( nn.Conv2d(1, 16, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.AdaptiveAvgPool2d((4, 4)) ) self.projection = nn.Linear(32 * 4 * 4, embed_dim) def forward(self, x): x = self.conv_block(x) B, C, H, W = x.shape x = x.view(B, -1) x = self.projection(x) return x class CrossAttention(nn.Module): def __init__(self, embed_dim, num_heads): super(CrossAttention, self).__init__() self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True) self.layer_norm1 = nn.LayerNorm(embed_dim) self.layer_norm2 = nn.LayerNorm(embed_dim) self.feed_forward = nn.Sequential( nn.Linear(embed_dim, embed_dim * 4), nn.ReLU(), nn.Linear(embed_dim * 4, embed_dim) ) def forward(self, x, cross_input): attn_output, _ = self.multihead_attn(query=x, key=cross_input, value=cross_input) x = self.layer_norm1(x + attn_output) ff_output = self.feed_forward(x) x = self.layer_norm2(x + ff_output) return x class CrossAttn_Transformer(nn.Module): def __init__(self, embed_dim=512, num_heads=8, num_layers=6, num_classes=2): super(CrossAttn_Transformer, self).__init__() self.cross_attention_layers = nn.ModuleList([ CrossAttention(embed_dim, num_heads) for _ in range(num_layers) ]) encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.classifier = nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, num_classes) ) def forward(self, x, cross_attention_input): self.attention_maps = [] for layer in self.cross_attention_layers: x = layer(x, cross_attention_input) x = x.permute(1, 0, 2) x = self.transformer(x) x = x.mean(dim=0) x = self.classifier(x) return x class MERT(nn.Module): def __init__(self, freeze_feature_extractor=True): super(MERT, self).__init__() config = AutoConfig.from_pretrained("m-a-p/MERT-v1-95M", trust_remote_code=True) if not hasattr(config, "conv_pos_batch_norm"): setattr(config, "conv_pos_batch_norm", False) self.mert = AutoModel.from_pretrained("m-a-p/MERT-v1-95M", config=config, trust_remote_code=True) if freeze_feature_extractor: self.freeze() def forward(self, input_values): with torch.no_grad(): outputs = self.mert(input_values, output_hidden_states=True) hidden_states = torch.stack(outputs.hidden_states) hidden_states = hidden_states.detach().clone().requires_grad_(True) time_reduced = hidden_states.mean(dim=2) time_reduced = time_reduced.permute(1, 0, 2) return time_reduced def freeze(self): for param in self.mert.parameters(): param.requires_grad = False def unfreeze(self): for param in self.mert.parameters(): param.requires_grad = True class MERT_AudioCNN(pl.LightningModule): def __init__(self, embed_dim=768, num_heads=8, num_layers=6, num_classes=2, freeze_feature_extractor=False, learning_rate=2e-5, weight_decay=0.01): super(MERT_AudioCNN, self).__init__() self.save_hyperparameters() self.feature_extractor = MERT(freeze_feature_extractor=freeze_feature_extractor) self.cross_attention_layers = nn.ModuleList([ CrossAttention(embed_dim, num_heads) for _ in range(num_layers) ]) encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, batch_first=True) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.classifier = nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Dropout(0.3), nn.Linear(256, num_classes) ) # Metrics self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.train_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.val_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.test_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.learning_rate = learning_rate self.weight_decay = weight_decay def forward(self, input_values): features = self.feature_extractor(input_values) for layer in self.cross_attention_layers: features = layer(features, features) features = features.mean(dim=1).unsqueeze(1) encoded = self.transformer(features) encoded = encoded.mean(dim=1) output = self.classifier(encoded) return output, encoded def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.train_acc(preds, y) self.train_f1(preds, y) self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True) self.log('train_acc', self.train_acc, on_step=False, on_epoch=True, prog_bar=True) self.log('train_f1', self.train_f1, on_step=False, on_epoch=True, prog_bar=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.val_acc(preds, y) self.val_f1(preds, y) self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True) self.log('val_acc', self.val_acc, on_step=False, on_epoch=True, prog_bar=True) self.log('val_f1', self.val_f1, on_step=False, on_epoch=True, prog_bar=True) return loss def test_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.test_acc(preds, y) self.test_f1(preds, y) self.log('test_loss', loss, on_step=False, on_epoch=True) self.log('test_acc', self.test_acc, on_step=False, on_epoch=True) self.log('test_f1', self.test_f1, on_step=False, on_epoch=True) return loss def configure_optimizers(self): optimizer = torch.optim.AdamW( self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay ) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode='min', factor=0.5, patience=2, verbose=True ) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": scheduler, "monitor": "val_loss", "interval": "epoch", "frequency": 1 } } def unfreeze_feature_extractor(self): self.feature_extractor.unfreeze() class Wav2vec_AudioCNN(pl.LightningModule): def __init__(self, model_name="facebook/wav2vec2-base", embed_dim=512, num_heads=8, num_layers=6, num_classes=2, freeze_feature_extractor=True, learning_rate=2e-5, weight_decay=0.01): super(Wav2vec_AudioCNN, self).__init__() self.save_hyperparameters() self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.feature_extractor = Wav2Vec2Model.from_pretrained(model_name) if freeze_feature_extractor: self.feature_extractor.freeze_feature_encoder() self.projection = nn.Linear(self.feature_extractor.config.hidden_size, embed_dim) self.decoder = CrossAttn_Transformer(embed_dim=embed_dim, num_heads=num_heads, num_layers=num_layers, num_classes=num_classes) # Metrics self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.train_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.val_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.test_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.learning_rate = learning_rate self.weight_decay = weight_decay def forward(self, x, cross_attention_input=None): x = x.squeeze(1) # Wav2Vec2 Feature Extraction features = self.feature_extractor(x).last_hidden_state features = self.projection(features) if cross_attention_input is None: cross_attention_input = features x = self.decoder(features, cross_attention_input) return x def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.train_acc(preds, y) self.train_f1(preds, y) self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True) self.log('train_acc', self.train_acc, on_step=False, on_epoch=True, prog_bar=True) self.log('train_f1', self.train_f1, on_step=False, on_epoch=True, prog_bar=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.val_acc(preds, y) self.val_f1(preds, y) self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True) self.log('val_acc', self.val_acc, on_step=False, on_epoch=True, prog_bar=True) self.log('val_f1', self.val_f1, on_step=False, on_epoch=True, prog_bar=True) return loss def test_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.test_acc(preds, y) self.test_f1(preds, y) self.log('test_loss', loss, on_step=False, on_epoch=True) self.log('test_acc', self.test_acc, on_step=False, on_epoch=True) self.log('test_f1', self.test_f1, on_step=False, on_epoch=True) return loss def configure_optimizers(self): optimizer = torch.optim.AdamW( self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay ) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode='min', factor=0.5, patience=2, verbose=True ) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": scheduler, "monitor": "val_loss", "interval": "epoch", "frequency": 1 } } class Music2vec_AudioCNN(pl.LightningModule): def __init__(self, embed_dim=512, num_heads=8, num_layers=6, num_classes=2, learning_rate=2e-5, weight_decay=0.01): super(Music2vec_AudioCNN, self).__init__() self.save_hyperparameters() self.feature_extractor = Music2vec(freeze_feature_extractor=True) self.projection = nn.Linear(self.feature_extractor.music2vec.config.hidden_size, embed_dim) self.decoder = CrossAttn_Transformer(embed_dim=embed_dim, num_heads=num_heads, num_layers=num_layers, num_classes=num_classes) # Metrics self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.train_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.val_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.test_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.learning_rate = learning_rate self.weight_decay = weight_decay def forward(self, x, cross_attention_input=None): x = x.squeeze(1) features = self.feature_extractor(x) features = self.projection(features) if cross_attention_input is None: cross_attention_input = features x = self.decoder(features.unsqueeze(1), cross_attention_input.unsqueeze(1)) return x def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.train_acc(preds, y) self.train_f1(preds, y) self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True) self.log('train_acc', self.train_acc, on_step=False, on_epoch=True, prog_bar=True) self.log('train_f1', self.train_f1, on_step=False, on_epoch=True, prog_bar=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.val_acc(preds, y) self.val_f1(preds, y) self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True) self.log('val_acc', self.val_acc, on_step=False, on_epoch=True, prog_bar=True) self.log('val_f1', self.val_f1, on_step=False, on_epoch=True, prog_bar=True) return loss def test_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.test_acc(preds, y) self.test_f1(preds, y) self.log('test_loss', loss, on_step=False, on_epoch=True) self.log('test_acc', self.test_acc, on_step=False, on_epoch=True) self.log('test_f1', self.test_f1, on_step=False, on_epoch=True) return loss def configure_optimizers(self): optimizer = torch.optim.AdamW( self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay ) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode='min', factor=0.5, patience=2, verbose=True ) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": scheduler, "monitor": "val_loss", "interval": "epoch", "frequency": 1 } } class AudioCNN(pl.LightningModule): def __init__(self, embed_dim=512, num_heads=8, num_layers=6, num_classes=2, learning_rate=2e-5, weight_decay=0.01): super(AudioCNN, self).__init__() self.save_hyperparameters() self.encoder = cnnblock(embed_dim=embed_dim) self.decoder = CrossAttn_Transformer(embed_dim=embed_dim, num_heads=num_heads, num_layers=num_layers, num_classes=num_classes) # Metrics self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes) self.train_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.val_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.test_f1 = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) self.learning_rate = learning_rate self.weight_decay = weight_decay def forward(self, x, cross_attention_input=None): x = self.encoder(x) x = x.unsqueeze(1) if cross_attention_input is None: cross_attention_input = x x = self.decoder(x, cross_attention_input) return x def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.train_acc(preds, y) self.train_f1(preds, y) self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True) self.log('train_acc', self.train_acc, on_step=False, on_epoch=True, prog_bar=True) self.log('train_f1', self.train_f1, on_step=False, on_epoch=True, prog_bar=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.val_acc(preds, y) self.val_f1(preds, y) self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True) self.log('val_acc', self.val_acc, on_step=False, on_epoch=True, prog_bar=True) self.log('val_f1', self.val_f1, on_step=False, on_epoch=True, prog_bar=True) return loss def test_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.test_acc(preds, y) self.test_f1(preds, y) self.log('test_loss', loss, on_step=False, on_epoch=True) self.log('test_acc', self.test_acc, on_step=False, on_epoch=True) self.log('test_f1', self.test_f1, on_step=False, on_epoch=True) return loss def configure_optimizers(self): optimizer = torch.optim.AdamW( self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay ) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode='min', factor=0.5, patience=2, verbose=True ) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": scheduler, "monitor": "val_loss", "interval": "epoch", "frequency": 1 } } # 필요한 보조 클래스들 class Music2vec(nn.Module): def __init__(self, freeze_feature_extractor=True): super(Music2vec, self).__init__() self.processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") self.music2vec = Data2VecAudioModel.from_pretrained("m-a-p/music2vec-v1") if freeze_feature_extractor: for param in self.music2vec.parameters(): param.requires_grad = False self.conv1d = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1) def forward(self, input_values): input_values = input_values.squeeze(1) with torch.no_grad(): outputs = self.music2vec(input_values, output_hidden_states=True) hidden_states = torch.stack(outputs.hidden_states) time_reduced = hidden_states.mean(dim=2) time_reduced = time_reduced.permute(1, 0, 2) weighted_avg = self.conv1d(time_reduced).squeeze(1) return weighted_avg