Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,135 Bytes
0ede85b be8ccdd 0ede85b 508344f 0ede85b be8ccdd 0ede85b be8ccdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from torch.utils.data import Dataset, DataLoader
from typing import List, Tuple, Optional
import numpy as np
from pathlib import Path
import math
# from deepspeed.ops.adam import FusedAdam # 호환성 문제로 비활성화
class MusicAudioClassifier(pl.LightningModule):
def __init__(self,
input_dim: int,
hidden_dim: int = 256,
learning_rate: float = 1e-4,
emb_model: Optional[nn.Module] = None,
backbone: str = 'segment_transformer',
num_classes: int = 2):
super().__init__()
self.save_hyperparameters()
if backbone == 'segment_transformer':
self.model = SegmentTransformer(
input_dim=input_dim,
hidden_dim=hidden_dim,
num_classes=num_classes,
mode = 'both'
)
elif backbone == 'fusion_segment_transformer':
self.model = FusionSegmentTransformer(
input_dim=input_dim,
hidden_dim=hidden_dim,
num_classes=num_classes
)
# elif backbone == 'guided_segment_transformer':
# self.model = GuidedSegmentTransformer(
# input_dim=input_dim,
# hidden_dim=hidden_dim,
# num_classes=num_classes
# )
def _process_audio_batch(self, x: torch.Tensor) -> torch.Tensor:
B, S = x.shape[:2] # [B, S, C, M, T] or [B, S, C, T] for wav, [B, S, 1?, embsize] for emb
x = x.view(B*S, *x.shape[2:]) # [B*S, C, M, T]
embeddings=x
if embeddings.dim() == 3:
pooled_features = embeddings.mean(dim=1) # transformer
else:
pooled_features = embeddings # CCV..? no need to pooling
return pooled_features.view(B, S, -1) # [B, S, emb_dim]
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
x = self._process_audio_batch(x) # 이걸 freeze하고 쓰는게 사실상 윗버전임
x = x.half()
return self.model(x, mask)
def _compute_loss_and_probs(self, y_hat: torch.Tensor, y: torch.Tensor):
"""Compute loss and probabilities based on number of classes"""
if y_hat.size(0) == 1:
y_hat_flat = y_hat.flatten()
y_flat = y.flatten()
else:
y_hat_flat = y_hat.squeeze() if self.num_classes == 2 else y_hat
y_flat = y
if self.num_classes == 2:
loss = F.binary_cross_entropy_with_logits(y_hat_flat, y_flat.float())
probs = torch.sigmoid(y_hat_flat)
preds = (probs > 0.5).long()
else:
loss = F.cross_entropy(y_hat_flat, y_flat.long())
probs = F.softmax(y_hat_flat, dim=-1)
preds = torch.argmax(y_hat_flat, dim=-1)
return loss, probs, preds, y_flat.long()
def training_step(self, batch: Tuple[torch.Tensor, torch.Tensor, torch.Tensor], batch_idx: int) -> torch.Tensor:
x, y, mask = batch
x = x.half()
y_hat = self(x, mask)
loss, probs, preds, y_true = self._compute_loss_and_probs(y_hat, y)
# 간단한 배치 손실만 로깅 (step 수준)
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, sync_dist=True)
# 전체 에폭에 대한 메트릭 계산을 위해 예측과 실제값 저장
if self.num_classes == 2:
self.training_step_outputs.append({'preds': probs, 'targets': y_true, 'binary_preds': preds})
else:
self.training_step_outputs.append({'probs': probs, 'preds': preds, 'targets': y_true})
return loss
def validation_step(self, batch: Tuple[torch.Tensor, torch.Tensor, torch.Tensor], batch_idx: int) -> None:
x, y, mask = batch
x = x.half()
y_hat = self(x, mask)
loss, probs, preds, y_true = self._compute_loss_and_probs(y_hat, y)
# 간단한 배치 손실만 로깅 (step 수준)
self.log('val_loss', loss, on_step=True, on_epoch=True, prog_bar=True, sync_dist=True)
# 전체 에폭에 대한 메트릭 계산을 위해 예측과 실제값 저장
if self.num_classes == 2:
self.validation_step_outputs.append({'preds': probs, 'targets': y_true, 'binary_preds': preds})
else:
self.validation_step_outputs.append({'probs': probs, 'preds': preds, 'targets': y_true})
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor, torch.Tensor], batch_idx: int) -> None:
x, y, mask = batch
x = x.half()
y_hat = self(x, mask)
loss, probs, preds, y_true = self._compute_loss_and_probs(y_hat, y)
# 간단한 배치 손실만 로깅 (step 수준)
self.log('test_loss', loss, on_epoch=True, prog_bar=True)
# 전체 에폭에 대한 메트릭 계산을 위해 예측과 실제값 저장
if self.num_classes == 2:
self.test_step_outputs.append({'preds': probs, 'targets': y_true, 'binary_preds': preds})
else:
self.test_step_outputs.append({'probs': probs, 'preds': preds, 'targets': y_true})
def on_train_epoch_start(self):
# 에폭 시작 시 결과 저장용 리스트 초기화
self.training_step_outputs = []
def on_validation_epoch_start(self):
# 에폭 시작 시 결과 저장용 리스트 초기화
self.validation_step_outputs = []
def on_test_epoch_start(self):
# 에폭 시작 시 결과 저장용 리스트 초기화
self.test_step_outputs = []
def _compute_binary_metrics(self, outputs, prefix):
"""Binary classification metrics computation"""
all_preds = torch.cat([x['preds'] for x in outputs])
all_targets = torch.cat([x['targets'] for x in outputs])
binary_preds = torch.cat([x['binary_preds'] for x in outputs])
# 정확도 계산
acc = (binary_preds == all_targets).float().mean()
# 혼동 행렬 요소 계산
tp = torch.sum((binary_preds == 1) & (all_targets == 1)).float()
fp = torch.sum((binary_preds == 1) & (all_targets == 0)).float()
tn = torch.sum((binary_preds == 0) & (all_targets == 0)).float()
fn = torch.sum((binary_preds == 0) & (all_targets == 1)).float()
# 메트릭 계산
precision = tp / (tp + fp) if (tp + fp) > 0 else torch.tensor(0.0).to(tp.device)
recall = tp / (tp + fn) if (tp + fn) > 0 else torch.tensor(0.0).to(tp.device)
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else torch.tensor(0.0).to(tp.device)
specificity = tn / (tn + fp) if (tn + fp) > 0 else torch.tensor(0.0).to(tn.device)
# 로깅
self.log(f'{prefix}_acc', acc, on_epoch=True, prog_bar=True, sync_dist=True)
self.log(f'{prefix}_precision', precision, on_epoch=True, sync_dist=True)
self.log(f'{prefix}_recall', recall, on_epoch=True, sync_dist=True)
self.log(f'{prefix}_f1', f1, on_epoch=True, prog_bar=True, sync_dist=True)
self.log(f'{prefix}_specificity', specificity, on_epoch=True, sync_dist=True)
if prefix in ['val', 'test']:
# ROC-AUC 계산 (간단한 근사)
sorted_indices = torch.argsort(all_preds, descending=True)
sorted_targets = all_targets[sorted_indices]
n_pos = torch.sum(all_targets)
n_neg = len(all_targets) - n_pos
if n_pos > 0 and n_neg > 0:
tpr_curve = torch.cumsum(sorted_targets, dim=0) / n_pos
fpr_curve = torch.cumsum(1 - sorted_targets, dim=0) / n_neg
width = fpr_curve[1:] - fpr_curve[:-1]
height = (tpr_curve[1:] + tpr_curve[:-1]) / 2
auc_approx = torch.sum(width * height)
self.log(f'{prefix}_auc', auc_approx, on_epoch=True, sync_dist=True)
if prefix == 'test':
balanced_acc = (recall + specificity) / 2
self.log('test_balanced_acc', balanced_acc, on_epoch=True)
def _compute_multiclass_metrics(self, outputs, prefix):
"""Multi-class classification metrics computation"""
all_probs = torch.cat([x['probs'] for x in outputs])
all_preds = torch.cat([x['preds'] for x in outputs])
all_targets = torch.cat([x['targets'] for x in outputs])
# 전체 정확도
acc = (all_preds == all_targets).float().mean()
self.log(f'{prefix}_acc', acc, on_epoch=True, prog_bar=True, sync_dist=True)
# 클래스별 메트릭 계산
for class_idx in range(self.num_classes):
# 각 클래스에 대한 이진 분류 메트릭
class_targets = (all_targets == class_idx).long()
class_preds = (all_preds == class_idx).long()
tp = torch.sum((class_preds == 1) & (class_targets == 1)).float()
fp = torch.sum((class_preds == 1) & (class_targets == 0)).float()
tn = torch.sum((class_preds == 0) & (class_targets == 0)).float()
fn = torch.sum((class_preds == 0) & (class_targets == 1)).float()
precision = tp / (tp + fp) if (tp + fp) > 0 else torch.tensor(0.0).to(tp.device)
recall = tp / (tp + fn) if (tp + fn) > 0 else torch.tensor(0.0).to(tp.device)
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else torch.tensor(0.0).to(tp.device)
self.log(f'{prefix}_class_{class_idx}_precision', precision, on_epoch=True)
self.log(f'{prefix}_class_{class_idx}_recall', recall, on_epoch=True)
self.log(f'{prefix}_class_{class_idx}_f1', f1, on_epoch=True)
# 매크로 평균 F1 스코어
class_f1_scores = []
for class_idx in range(self.num_classes):
class_targets = (all_targets == class_idx).long()
class_preds = (all_preds == class_idx).long()
tp = torch.sum((class_preds == 1) & (class_targets == 1)).float()
fp = torch.sum((class_preds == 1) & (class_targets == 0)).float()
fn = torch.sum((class_preds == 0) & (class_targets == 1)).float()
precision = tp / (tp + fp) if (tp + fp) > 0 else torch.tensor(0.0).to(tp.device)
recall = tp / (tp + fn) if (tp + fn) > 0 else torch.tensor(0.0).to(tp.device)
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else torch.tensor(0.0).to(tp.device)
class_f1_scores.append(f1)
macro_f1 = torch.stack(class_f1_scores).mean()
self.log(f'{prefix}_macro_f1', macro_f1, on_epoch=True, prog_bar=True, sync_dist=True)
def on_train_epoch_end(self):
if not hasattr(self, 'training_step_outputs') or not self.training_step_outputs:
return
if self.num_classes == 2:
self._compute_binary_metrics(self.training_step_outputs, 'train')
else:
self._compute_multiclass_metrics(self.training_step_outputs, 'train')
def on_validation_epoch_end(self):
if not hasattr(self, 'validation_step_outputs') or not self.validation_step_outputs:
return
if self.num_classes == 2:
self._compute_binary_metrics(self.validation_step_outputs, 'val')
else:
self._compute_multiclass_metrics(self.validation_step_outputs, 'val')
def on_test_epoch_end(self):
if not hasattr(self, 'test_step_outputs') or not self.test_step_outputs:
return
if self.num_classes == 2:
self._compute_binary_metrics(self.test_step_outputs, 'test')
else:
self._compute_multiclass_metrics(self.test_step_outputs, 'test')
def configure_optimizers(self):
# FusedAdam 대신 일반 AdamW 사용 (GLIBC 호환성 문제 해결)
optimizer = torch.optim.AdamW(
self.parameters(),
lr=self.learning_rate,
weight_decay=0.01
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=100, # Adjust based on your training epochs
eta_min=1e-6
)
return {
'optimizer': optimizer,
'lr_scheduler': scheduler,
'monitor': 'val_loss',
}
def pad_sequence_with_mask(batch: List[Tuple[torch.Tensor, int]]) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Collate function for DataLoader that creates padded sequences and attention masks with fixed length (48)."""
embeddings, labels = zip(*batch)
fixed_len = 48 # 고정 길이
batch_size = len(embeddings)
feat_dim = embeddings[0].shape[-1]
padded = torch.zeros((batch_size, fixed_len, feat_dim)) # 고정 길이로 패딩된 텐서
mask = torch.ones((batch_size, fixed_len), dtype=torch.bool) # True는 padding을 의미
for i, emb in enumerate(embeddings):
length = emb.shape[0]
# 길이가 고정 길이보다 길면 자르고, 짧으면 패딩
if length > fixed_len:
padded[i, :] = emb[:fixed_len] # fixed_len보다 긴 부분을 잘라서 채운다.
mask[i, :] = False
else:
padded[i, :length] = emb # 실제 데이터 길이에 맞게 채운다.
mask[i, :length] = False # 패딩이 아닌 부분은 False로 설정
return padded, torch.tensor(labels), mask
class SegmentTransformer(nn.Module):
def __init__(self,
input_dim: int,
hidden_dim: int = 256,
num_heads: int = 8,
num_layers: int = 4,
dropout: float = 0.1,
max_sequence_length: int = 1000,
mode: str = 'both',
share_parameter: bool = False,
num_classes: int = 2):
super().__init__()
# Original sequence processing
self.input_projection = nn.Linear(input_dim, hidden_dim)
self.mode = mode
self.share_parameter = share_parameter
self.num_classes = num_classes
# Positional encoding
position = torch.arange(max_sequence_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, hidden_dim, 2) * (-np.log(10000.0) / hidden_dim))
pos_encoding = torch.zeros(max_sequence_length, hidden_dim)
pos_encoding[:, 0::2] = torch.sin(position * div_term)
pos_encoding[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pos_encoding', pos_encoding)
# Transformer for original sequence
encoder_layer = nn.TransformerEncoderLayer(
d_model=hidden_dim,
nhead=num_heads,
dim_feedforward=hidden_dim * 4,
dropout=dropout,
batch_first=True
)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.sim_transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# Self-similarity stream processing
self.similarity_projection = nn.Sequential(
nn.Conv1d(1, hidden_dim // 2, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(hidden_dim // 2, hidden_dim, kernel_size=3, padding=1),
nn.ReLU(),
nn.Dropout(dropout)
)
# Transformer for similarity stream
self.similarity_transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# Final classification head
self.classification_head_dim = hidden_dim * 2 if mode == 'both' else hidden_dim
# Output dimension based on number of classes
output_dim = 1 if num_classes == 2 else num_classes
self.classification_head = nn.Sequential(
nn.Linear(self.classification_head_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, hidden_dim // 2),
nn.LayerNorm(hidden_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim // 2, output_dim)
)
def forward(self, x: torch.Tensor, padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, seq_len, _ = x.shape
# 1. Process original sequence
x = x.half()
x1 = self.input_projection(x)
x1 = x1 + self.pos_encoding[:seq_len].unsqueeze(0)
x1 = self.transformer(x1, src_key_padding_mask=padding_mask) # padding_mask 사용
# 2. Calculate and process self-similarity
x_expanded = x.unsqueeze(2)
x_transposed = x.unsqueeze(1)
distances = torch.mean((x_expanded - x_transposed) ** 2, dim=-1)
similarity_matrix = torch.exp(-distances) # (batch_size, seq_len, seq_len)
# 자기 유사도 마스크 생성 및 적용 (각 시점에 대한 마스크 개별 적용)
if padding_mask is not None:
similarity_mask = padding_mask.unsqueeze(1) | padding_mask.unsqueeze(2) # (batch_size, seq_len, seq_len)
similarity_matrix = similarity_matrix.masked_fill(similarity_mask, 0.0)
# Process similarity matrix row by row using Conv1d
x2 = similarity_matrix.unsqueeze(1) # (batch_size, 1, seq_len, seq_len)
x2 = x2.view(batch_size * seq_len, 1, seq_len) # Reshape for Conv1d
x2 = self.similarity_projection(x2) # (batch_size * seq_len, hidden_dim, seq_len)
x2 = x2.mean(dim=2) # Pool across sequence dimension
x2 = x2.view(batch_size, seq_len, -1) # Reshape back
x2 = x2 + self.pos_encoding[:seq_len].unsqueeze(0)
if self.share_parameter:
x2 = self.transformer(x2, src_key_padding_mask=padding_mask)
else:
x2 = self.sim_transformer(x2, src_key_padding_mask=padding_mask) # padding_mask 사용
# 3. Global average pooling for both streams
if padding_mask is not None:
mask_expanded = (~padding_mask).float().unsqueeze(-1)
x1 = (x1 * mask_expanded).sum(dim=1) / mask_expanded.sum(dim=1)
x2 = (x2 * mask_expanded).sum(dim=1) / mask_expanded.sum(dim=1)
else:
x1 = x1.mean(dim=1)
x2 = x2.mean(dim=1)
# 4. Combine both streams and classify
if self.mode == 'only_emb':
x = x1
elif self.mode == 'only_structure':
x = x2
elif self.mode == 'both':
x = torch.cat([x1, x2], dim=-1)
x= x.half()
return self.classification_head(x)
class PairwiseGuidedTransformer(nn.Module):
"""Pairwise similarity matrix를 활용한 범용 transformer layer
Vision: patch간 유사도, NLP: token간 유사도, Audio: segment간 유사도 등에 활용 가능
"""
def __init__(self, d_model: int, num_heads: int = 8):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
# Standard Q, K projections
self.q_proj = nn.Linear(d_model, d_model)
self.k_proj = nn.Linear(d_model, d_model)
# Pairwise-guided V projection
self.v_proj = nn.Linear(d_model, d_model)
self.output_proj = nn.Linear(d_model, d_model)
self.norm = nn.LayerNorm(d_model)
def forward(self, x, pairwise_matrix, padding_mask=None):
"""
Args:
x: (batch, seq_len, d_model) - sequence embeddings
pairwise_matrix: (batch, seq_len, seq_len) - pairwise similarity/distance matrix
padding_mask: (batch, seq_len) - padding mask
"""
batch_size, seq_len, d_model = x.shape
# Standard Q, K, V
Q = self.q_proj(x)
K = self.k_proj(x)
V = self.v_proj(x)
# Reshape for multi-head
Q = Q.view(batch_size, seq_len, self.num_heads, -1).transpose(1, 2)
K = K.view(batch_size, seq_len, self.num_heads, -1).transpose(1, 2)
V = V.view(batch_size, seq_len, self.num_heads, -1).transpose(1, 2)
# Standard attention scores
scores = torch.matmul(Q, K.transpose(-2, -1)) / (d_model ** 0.5)
# ✅ Combine with pairwise matrix
#pairwise_expanded = pairwise_matrix.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
enhanced_scores = scores# + pairwise_expanded 이거 빼고 하기로 했죠?
# Apply padding mask
if padding_mask is not None:
mask_4d = padding_mask.unsqueeze(1).unsqueeze(1).expand(-1, self.num_heads, seq_len, -1)
enhanced_scores = enhanced_scores.masked_fill(mask_4d, float('-inf'))
# Softmax and apply to V
attn_weights = F.softmax(enhanced_scores, dim=-1)
attended = torch.matmul(attn_weights, V)
# Reshape and project
attended = attended.transpose(1, 2).contiguous().view(batch_size, seq_len, d_model)
output = self.output_proj(attended)
return self.norm(x + output)
class MultiScaleAdaptivePooler(nn.Module):
"""Multi-scale adaptive pooling - 다양한 도메인에서 활용 가능"""
def __init__(self, hidden_dim: int, num_heads: int = 8):
super().__init__()
# Attention-based pooling
self.attention_pool = nn.MultiheadAttention(
hidden_dim, num_heads=num_heads, batch_first=True
)
self.query_token = nn.Parameter(torch.randn(1, 1, hidden_dim))
# Complementary pooling strategies
self.max_pool_proj = nn.Linear(hidden_dim, hidden_dim)
self.fusion = nn.Linear(hidden_dim * 3, hidden_dim)
def forward(self, x, padding_mask=None):
"""
Args:
x: (batch, seq_len, hidden_dim) - sequence features
padding_mask: (batch, seq_len) - padding mask
actually not better than avg pooling haha
"""
batch_size = x.size(0)
# 1. Global average pooling
if padding_mask is not None:
mask_expanded = (~padding_mask).float().unsqueeze(-1)
global_avg = (x * mask_expanded).sum(dim=1) / mask_expanded.sum(dim=1)
else:
global_avg = x.mean(dim=1)
# # 2. Global max pooling
# if padding_mask is not None:
# x_masked = x.clone()
# x_masked[padding_mask] = float('-inf')
# global_max = x_masked.max(dim=1)[0]
# else:
# global_max = x.max(dim=1)[0]
# global_max = self.max_pool_proj(global_max)
# # 3. Attention-based pooling
# query = self.query_token.expand(batch_size, -1, -1)
# attn_pooled, _ = self.attention_pool(
# query, x, x,
# key_padding_mask=padding_mask
# )
# attn_pooled = attn_pooled.squeeze(1)
# # 4. Fuse all pooling results
# #combined = torch.cat([global_avg, global_max, attn_pooled], dim=-1)
# #output = self.fusion(combined)
output = global_avg
return output
class GuidedSegmentTransformer(nn.Module):
def __init__(self,
input_dim: int,
hidden_dim: int = 256,
num_heads: int = 8,
num_layers: int = 4,
dropout: float = 0.1,
max_sequence_length: int = 1000,
mode: str = 'only_emb',
share_parameter: bool = False,
num_classes: int = 2):
super().__init__()
# Original sequence processing
self.input_projection = nn.Linear(input_dim, hidden_dim)
self.mode = mode
self.share_parameter = share_parameter
self.num_classes = num_classes
# Positional encoding
position = torch.arange(max_sequence_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, hidden_dim, 2) * (-np.log(10000.0) / hidden_dim))
pos_encoding = torch.zeros(max_sequence_length, hidden_dim)
pos_encoding[:, 0::2] = torch.sin(position * div_term)
pos_encoding[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pos_encoding', pos_encoding)
# ✅ Pairwise-guided transformer layers (범용적 이름)
self.pairwise_guided_layers = nn.ModuleList([
PairwiseGuidedTransformer(hidden_dim, num_heads)
for _ in range(num_layers)
])
# Pairwise matrix processing (기존 similarity processing)
self.pairwise_projection = nn.Sequential(
nn.Conv1d(1, hidden_dim // 2, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(hidden_dim // 2, hidden_dim, kernel_size=3, padding=1),
nn.ReLU(),
nn.Dropout(dropout)
)
# ✅ Multi-scale adaptive pooling (범용적 이름)
self.adaptive_pooler = MultiScaleAdaptivePooler(hidden_dim, num_heads)
# Final classification head
self.classification_head_dim = hidden_dim * 2 if mode == 'both' else hidden_dim
output_dim = 1 if num_classes == 2 else num_classes
self.classification_head = nn.Sequential(
nn.Linear(self.classification_head_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, hidden_dim // 2),
nn.LayerNorm(hidden_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim // 2, output_dim)
)
def forward(self, x: torch.Tensor, padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, seq_len, _ = x.shape
# 1. Process sequence
x1 = self.input_projection(x)
x1 = x1 + self.pos_encoding[:seq_len].unsqueeze(0)
# 2. Calculate pairwise matrix (can be similarity, distance, correlation, etc.)
x_expanded = x.unsqueeze(2)
x_transposed = x.unsqueeze(1)
distances = torch.mean((x_expanded - x_transposed) ** 2, dim=-1)
pairwise_matrix = torch.exp(-distances) # Convert distance to similarity
# Apply padding mask to pairwise matrix
if padding_mask is not None:
pairwise_mask = padding_mask.unsqueeze(1) | padding_mask.unsqueeze(2)
pairwise_matrix = pairwise_matrix.masked_fill(pairwise_mask, 0.0)
# ✅ Pairwise-guided processing
for layer in self.pairwise_guided_layers:
x1 = layer(x1, pairwise_matrix, padding_mask)
# 3. Process pairwise matrix as separate stream (optional)
if self.mode in ['only_structure', 'both']:
x2 = pairwise_matrix.unsqueeze(1)
x2 = x2.view(batch_size * seq_len, 1, seq_len)
x2 = self.pairwise_projection(x2)
x2 = x2.mean(dim=2)
x2 = x2.view(batch_size, seq_len, -1)
x2 = x2 + self.pos_encoding[:seq_len].unsqueeze(0)
# ✅ Multi-scale adaptive pooling
if self.mode == 'only_emb':
x = self.adaptive_pooler(x1, padding_mask)
elif self.mode == 'only_structure':
x = self.adaptive_pooler(x2, padding_mask)
elif self.mode == 'both':
x1_pooled = self.adaptive_pooler(x1, padding_mask)
x2_pooled = self.adaptive_pooler(x2, padding_mask)
x = torch.cat([x1_pooled, x2_pooled], dim=-1)
x = x
return self.classification_head(x)
class CrossModalFusionLayer(nn.Module):
"""Structure와 Embedding 정보를 점진적으로 융합"""
def __init__(self, d_model: int, num_heads: int = 8):
super().__init__()
# Cross-attention: embedding이 structure를 query하고, structure가 embedding을 query
self.emb_to_struct_attn = nn.MultiheadAttention(d_model, num_heads, batch_first=True)
self.struct_to_emb_attn = nn.MultiheadAttention(d_model, num_heads, batch_first=True)
# Fusion gate (어느 정보를 얼마나 믿을지)
self.fusion_gate = nn.Sequential(
nn.Linear(d_model * 2, d_model),
nn.Sigmoid()
)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, emb_features, struct_features, padding_mask=None):
"""
emb_features: (batch, seq_len, d_model) - 메인 embedding 정보
struct_features: (batch, seq_len, d_model) - structure 정보
"""
# 1. Embedding이 Structure 정보를 참조
emb_enhanced, _ = self.emb_to_struct_attn(
emb_features, struct_features, struct_features,
key_padding_mask=padding_mask
)
emb_enhanced = self.norm1(emb_features + emb_enhanced)
# 2. Structure가 Embedding 정보를 참조
struct_enhanced, _ = self.struct_to_emb_attn(
struct_features, emb_features, emb_features,
key_padding_mask=padding_mask
)
struct_enhanced = self.norm2(struct_features + struct_enhanced)
# 3. Adaptive fusion (둘 중 어느 것을 더 믿을지 학습)
combined = torch.cat([emb_enhanced, struct_enhanced], dim=-1)
gate_weight = self.fusion_gate(combined) # (batch, seq_len, d_model)
# Gated combination
fused = gate_weight * emb_enhanced + (1 - gate_weight) * struct_enhanced
return fused
class FusionSegmentTransformer(nn.Module):
def __init__(self,
input_dim: int,
hidden_dim: int = 256,
num_heads: int = 8,
num_layers: int = 4,
dropout: float = 0.1,
max_sequence_length: int = 1000,
mode: str = 'both', # 기본값을 both로
share_parameter: bool = False,
num_classes: int = 2):
super().__init__()
self.input_projection = nn.Linear(input_dim, hidden_dim)
self.mode = mode
self.num_classes = num_classes
# Positional encoding
position = torch.arange(max_sequence_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, hidden_dim, 2) * (-np.log(10000.0) / hidden_dim))
pos_encoding = torch.zeros(max_sequence_length, hidden_dim)
pos_encoding[:, 0::2] = torch.sin(position * div_term)
pos_encoding[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pos_encoding', pos_encoding)
# ✅ Embedding stream: Pairwise-guided transformer
self.embedding_layers = nn.ModuleList([
PairwiseGuidedTransformer(hidden_dim, num_heads)
for _ in range(num_layers)
])
# ✅ Structure stream: Pairwise matrix processing
self.pairwise_projection = nn.Sequential(
nn.Conv1d(1, hidden_dim // 2, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(hidden_dim // 2, hidden_dim, kernel_size=3, padding=1),
nn.ReLU(),
nn.Dropout(dropout)
)
# Structure transformer layers
self.structure_layers = nn.ModuleList([
nn.TransformerEncoderLayer(
d_model=hidden_dim,
nhead=num_heads,
dim_feedforward=hidden_dim * 4,
dropout=dropout,
batch_first=True
) for _ in range(num_layers // 2) # 절반만 사용
])
# ✅ Cross-modal fusion layers (핵심!)
self.fusion_layers = nn.ModuleList([
CrossModalFusionLayer(hidden_dim, num_heads)
for _ in range(1) # fusion은 하나만 써야 gate가 유의미해질듯
])
# Adaptive pooling
self.adaptive_pooler = MultiScaleAdaptivePooler(hidden_dim, num_heads)
# Final classification head (이제 단일 차원)
output_dim = 1 if num_classes == 2 else num_classes
self.classification_head = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim), # 더 이상 concat 안함
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, hidden_dim // 2),
nn.LayerNorm(hidden_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim // 2, output_dim)
)
def forward(self, x: torch.Tensor, padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, seq_len, _ = x.shape
# 1. Initialize both streams
x_emb = self.input_projection(x)
x_emb = x_emb + self.pos_encoding[:seq_len].unsqueeze(0)
# 2. Calculate pairwise matrix
x_expanded = x.unsqueeze(2)
x_transposed = x.unsqueeze(1)
distances = torch.mean((x_expanded - x_transposed) ** 2, dim=-1)
pairwise_matrix = torch.exp(-distances)
if padding_mask is not None:
pairwise_mask = padding_mask.unsqueeze(1) | padding_mask.unsqueeze(2)
pairwise_matrix = pairwise_matrix.masked_fill(pairwise_mask, 0.0)
# 3. Process structure stream
x_struct = pairwise_matrix.unsqueeze(1)
x_struct = x_struct.view(batch_size * seq_len, 1, seq_len)
x_struct = self.pairwise_projection(x_struct)
x_struct = x_struct.mean(dim=2)
x_struct = x_struct.view(batch_size, seq_len, -1)
x_struct = x_struct + self.pos_encoding[:seq_len].unsqueeze(0)
for struct_layer in self.structure_layers:
x_struct = struct_layer(x_struct, src_key_padding_mask=padding_mask)
# 4. Process embedding stream (with pairwise guidance)
for emb_layer in self.embedding_layers:
x_emb = emb_layer(x_emb, pairwise_matrix, padding_mask)
# ✅ 5. Progressive Cross-modal Fusion (핵심!)
fused = x_emb # 시작은 embedding에서
for fusion_layer in self.fusion_layers:
fused = fusion_layer(fused, x_struct, padding_mask)
# 이제 fused는 embedding + structure 정보를 모두 포함
# 6. Final pooling and classification
pooled = self.adaptive_pooler(fused, padding_mask)
pooled = pooled.half()
return self.classification_head(pooled)
import torch |