add-push-functionality (#2)
Browse files- add uv dependency management (9887d1a4df161f6b31c41df1f4d4292a7ff732ee)
- update logic and refine (f6c9d9522533ff2cd645a600765ecffed7950fd6)
- add friendly readme (074bcd793aa1d1e8d226a58a34bbbc4240d95e48)
- fix readme yaml (adb4caa9f96313fecf70ccd7c6ae7a6767795141)
- simplify readme (d12ff685edafb31d5e62a1a1427b65fd1495c07f)
- .python-version +1 -0
- README.md +57 -1
- app.py +270 -79
- pyproject.toml +15 -0
- requirements.txt +5 -2
- uv.lock +0 -0
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.11
|
README.md
CHANGED
|
@@ -9,6 +9,62 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
short_description: Deduplicate HuggingFace datasets in seconds
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
short_description: Deduplicate HuggingFace datasets in seconds
|
| 12 |
+
hf_oauth: true
|
| 13 |
+
hf_oauth_scopes:
|
| 14 |
+
- write-repos
|
| 15 |
+
- manage-repos
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# Semantic Text Deduplication Using SemHash
|
| 19 |
+
|
| 20 |
+
This Gradio application performs **semantic deduplication** on HuggingFace datasets using [SemHash](https://github.com/MinishLab/semhash) with [Model2Vec](https://github.com/MinishLab/model2vec) embeddings.
|
| 21 |
+
|
| 22 |
+
## Features
|
| 23 |
+
|
| 24 |
+
- **Two deduplication modes**:
|
| 25 |
+
- **Single dataset**: Find and remove duplicates within one dataset
|
| 26 |
+
- **Cross-dataset**: Remove entries from Dataset 2 that are similar to entries in Dataset 1
|
| 27 |
+
|
| 28 |
+
- **Customizable similarity threshold**: Control how strict the deduplication should be (0.0 = very loose, 1.0 = exact matches only)
|
| 29 |
+
|
| 30 |
+
- **Detailed results**: View statistics and examples of found duplicates with word-level differences highlighted
|
| 31 |
+
|
| 32 |
+
- **Hub Integration**: 🆕 **Push deduplicated datasets directly to the Hugging Face Hub** after logging in
|
| 33 |
+
|
| 34 |
+
## How to Use
|
| 35 |
+
|
| 36 |
+
### 1. Choose Deduplication Type
|
| 37 |
+
- **Cross-dataset**: Useful for removing training data contamination from test sets
|
| 38 |
+
- **Single dataset**: Clean up duplicate entries within a single dataset
|
| 39 |
+
|
| 40 |
+
### 2. Configure Datasets
|
| 41 |
+
- Enter the HuggingFace dataset names (e.g., `SetFit/amazon_massive_scenario_en-US`)
|
| 42 |
+
- Specify the dataset splits (e.g., `train`, `test`, `validation`)
|
| 43 |
+
- Set the text column name (usually `text`, `sentence`, or `content`)
|
| 44 |
+
|
| 45 |
+
### 3. Set Similarity Threshold
|
| 46 |
+
- **0.9** (default): Good balance between precision and recall
|
| 47 |
+
- **Higher values** (0.95-0.99): More conservative, only removes very similar texts
|
| 48 |
+
- **Lower values** (0.7-0.85): More aggressive, may remove semantically similar but different texts
|
| 49 |
+
|
| 50 |
+
### 4. Run Deduplication
|
| 51 |
+
Click **"Deduplicate"** to start the process. You'll see:
|
| 52 |
+
- Loading progress for datasets
|
| 53 |
+
- Deduplication progress
|
| 54 |
+
- Results with statistics and example duplicates
|
| 55 |
+
|
| 56 |
+
### 5. Push to Hub (New!)
|
| 57 |
+
After deduplication completes:
|
| 58 |
+
1. **Log in** with your Hugging Face account using the login button
|
| 59 |
+
2. Enter a **dataset name** for your cleaned dataset
|
| 60 |
+
3. Click **"Push to Hub"** to upload the deduplicated dataset
|
| 61 |
+
|
| 62 |
+
The dataset will be saved as `your-username/dataset-name` and be publicly available.
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
## Notes
|
| 66 |
+
|
| 67 |
+
- The app preserves all original columns from the datasets
|
| 68 |
+
- Only the text similarity is used for deduplication decisions
|
| 69 |
+
- Deduplicated datasets maintain the same structure as the original
|
| 70 |
+
- OAuth login is required only for pushing to the Hub, not for deduplication
|
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from datasets import load_dataset
|
| 3 |
from difflib import ndiff
|
|
|
|
| 4 |
|
| 5 |
from semhash import SemHash
|
| 6 |
from semhash.datamodels import DeduplicationResult
|
|
@@ -28,21 +29,30 @@ def display_word_differences(x: str, y: str) -> str:
|
|
| 28 |
return f"```\n{formatted_diff}\n```"
|
| 29 |
|
| 30 |
|
| 31 |
-
def load_dataset_texts(
|
|
|
|
|
|
|
| 32 |
"""Load texts from a specified dataset split."""
|
| 33 |
ds = load_dataset(dataset_name, split=dataset_split)
|
| 34 |
-
return [example[text_column] for example in ds]
|
| 35 |
|
| 36 |
|
| 37 |
-
def deduplicate_single_dataset(
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# Build a SemHash index from the raw texts
|
| 40 |
semhash = SemHash.from_records(records=texts, model=model)
|
| 41 |
# Deduplicate the entire dataset
|
| 42 |
return semhash.self_deduplicate(threshold=threshold)
|
| 43 |
|
| 44 |
|
| 45 |
-
def deduplicate_two_datasets(
|
|
|
|
|
|
|
| 46 |
"""Deduplicate dataset2 against dataset1, both as raw strings, using SemHash."""
|
| 47 |
# Build SemHash index on dataset1
|
| 48 |
semhash = SemHash.from_records(records=texts1, model=model)
|
|
@@ -50,6 +60,22 @@ def deduplicate_two_datasets(texts1: list[str], texts2: list[str], threshold: fl
|
|
| 50 |
return semhash.deduplicate(records=texts2, threshold=threshold)
|
| 51 |
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
def perform_deduplication(
|
| 54 |
deduplication_type: str,
|
| 55 |
dataset1_name: str,
|
|
@@ -59,7 +85,7 @@ def perform_deduplication(
|
|
| 59 |
dataset2_split: str = "",
|
| 60 |
dataset2_text_column: str = "",
|
| 61 |
threshold: float = default_threshold,
|
| 62 |
-
progress: gr.Progress = gr.Progress(track_tqdm=True)
|
| 63 |
):
|
| 64 |
"""
|
| 65 |
Perform deduplication on one or two datasets using SemHash. This function
|
|
@@ -69,117 +95,225 @@ def perform_deduplication(
|
|
| 69 |
threshold = float(threshold)
|
| 70 |
|
| 71 |
# Load Dataset 1
|
| 72 |
-
|
| 73 |
-
|
|
|
|
| 74 |
|
| 75 |
if deduplication_type == "Single dataset":
|
| 76 |
# Single-dataset deduplication
|
| 77 |
-
yield "Deduplicating within Dataset 1 (SemHash)...", ""
|
| 78 |
result = deduplicate_single_dataset(texts1, threshold=threshold)
|
| 79 |
|
| 80 |
-
# Sort all duplicates
|
| 81 |
for duprec in result.duplicates:
|
| 82 |
-
duprec.duplicates.sort(key=lambda x: x[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Summarize results
|
| 85 |
num_duplicates = len(result.duplicates)
|
| 86 |
deduplicated_count = len(result.deduplicated)
|
| 87 |
total_docs = len(texts1)
|
| 88 |
-
|
| 89 |
-
result_text = (
|
| 90 |
-
f"**Total documents (Dataset 1):** {total_docs}\n\n"
|
| 91 |
-
f"**Duplicates found:** {num_duplicates}\n\n"
|
| 92 |
-
f"**Unique documents after deduplication:** {deduplicated_count}\n\n"
|
| 93 |
-
+ "-" * 50 + "\n\n"
|
| 94 |
-
)
|
| 95 |
|
| 96 |
-
#
|
|
|
|
| 97 |
if num_duplicates > 0:
|
| 98 |
-
result_text += "**Example duplicates:**\n\n"
|
| 99 |
-
|
| 100 |
# Only show duplicates that actually have near-duplicate records
|
| 101 |
-
duplicates_with_data = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
if duplicates_with_data:
|
|
|
|
|
|
|
| 103 |
for duprec in duplicates_with_data[:5]:
|
| 104 |
dup_text = duprec.record
|
| 105 |
orig_text, score = duprec.duplicates[0]
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
| 113 |
)
|
| 114 |
-
else:
|
| 115 |
-
result_text += "No near-duplicate details available.\n\n"
|
| 116 |
-
else:
|
| 117 |
-
result_text += "No duplicates found."
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
else:
|
| 122 |
# Cross-dataset deduplication
|
| 123 |
-
|
| 124 |
-
|
|
|
|
| 125 |
|
| 126 |
-
yield "Deduplicating Dataset 2 against Dataset 1 (SemHash)...", ""
|
| 127 |
result = deduplicate_two_datasets(texts1, texts2, threshold=threshold)
|
| 128 |
|
| 129 |
-
# Sort duplicates
|
| 130 |
for duprec in result.duplicates:
|
| 131 |
-
duprec.duplicates.sort(key=lambda x: x[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
num_duplicates = len(result.duplicates)
|
| 134 |
total_docs2 = len(texts2)
|
| 135 |
deduplicated_count = len(result.deduplicated)
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
| 140 |
-
f"**Unique documents after deduplication:** {deduplicated_count}\n\n"
|
| 141 |
-
+ "-" * 50 + "\n\n"
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
if num_duplicates > 0:
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
if duplicates_with_data:
|
|
|
|
|
|
|
| 150 |
for duprec in duplicates_with_data[:5]:
|
| 151 |
-
dup_text = duprec.record
|
| 152 |
orig_text, score = duprec.duplicates[0]
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
| 160 |
)
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
else:
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
except Exception as e:
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
|
| 173 |
# --- Gradio App ---
|
| 174 |
-
with gr.Blocks(
|
| 175 |
-
gr.
|
|
|
|
|
|
|
| 176 |
gr.Markdown("""
|
| 177 |
This demo showcases **semantic deduplication** using [SemHash](https://github.com/MinishLab/semhash) for HuggingFace datasets, using a [Model2Vec](https://github.com/MinishLab/model2vec) encoder.
|
| 178 |
It can be used to identify duplicate texts within a **single dataset** or across **two datasets**.
|
| 179 |
You can adjust the similarity threshold to control the strictness of the deduplication.
|
| 180 |
|
| 181 |
-
**NOTE**: This demo runs on a free CPU backend, so it may be slow for large datasets.
|
| 182 |
-
For faster results, please run the code locally.
|
| 183 |
""")
|
| 184 |
|
| 185 |
deduplication_type = gr.Radio(
|
|
@@ -190,28 +324,76 @@ with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; over
|
|
| 190 |
|
| 191 |
with gr.Row():
|
| 192 |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
| 193 |
-
dataset1_split = gr.Textbox(
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
dataset2_inputs = gr.Column(visible=True)
|
| 197 |
with dataset2_inputs:
|
| 198 |
with gr.Row():
|
| 199 |
-
dataset2_name = gr.Textbox(
|
| 200 |
-
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
threshold = gr.Slider(
|
|
|
|
|
|
|
| 204 |
|
| 205 |
with gr.Row():
|
| 206 |
-
compute_button = gr.Button("Deduplicate")
|
| 207 |
|
| 208 |
status_output = gr.Markdown(elem_id="status_output")
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
def update_visibility(choice: str):
|
| 212 |
return gr.update(visible=(choice == "Cross-dataset"))
|
| 213 |
|
| 214 |
-
deduplication_type.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
compute_button.click(
|
| 217 |
fn=perform_deduplication,
|
|
@@ -225,7 +407,16 @@ with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; over
|
|
| 225 |
dataset2_text_column,
|
| 226 |
threshold,
|
| 227 |
],
|
| 228 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
)
|
| 230 |
|
| 231 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from datasets import load_dataset, Dataset
|
| 3 |
from difflib import ndiff
|
| 4 |
+
import pandas as pd
|
| 5 |
|
| 6 |
from semhash import SemHash
|
| 7 |
from semhash.datamodels import DeduplicationResult
|
|
|
|
| 29 |
return f"```\n{formatted_diff}\n```"
|
| 30 |
|
| 31 |
|
| 32 |
+
def load_dataset_texts(
|
| 33 |
+
dataset_name: str, dataset_split: str, text_column: str
|
| 34 |
+
) -> tuple[list[str], Dataset]:
|
| 35 |
"""Load texts from a specified dataset split."""
|
| 36 |
ds = load_dataset(dataset_name, split=dataset_split)
|
| 37 |
+
return [example[text_column] for example in ds], ds
|
| 38 |
|
| 39 |
|
| 40 |
+
def deduplicate_single_dataset(
|
| 41 |
+
texts: list[str], threshold: float
|
| 42 |
+
) -> DeduplicationResult:
|
| 43 |
+
"""
|
| 44 |
+
Deduplicate within a single dataset using SemHash, treating each text
|
| 45 |
+
as a raw string record.
|
| 46 |
+
"""
|
| 47 |
# Build a SemHash index from the raw texts
|
| 48 |
semhash = SemHash.from_records(records=texts, model=model)
|
| 49 |
# Deduplicate the entire dataset
|
| 50 |
return semhash.self_deduplicate(threshold=threshold)
|
| 51 |
|
| 52 |
|
| 53 |
+
def deduplicate_two_datasets(
|
| 54 |
+
texts1: list[str], texts2: list[str], threshold: float
|
| 55 |
+
) -> DeduplicationResult:
|
| 56 |
"""Deduplicate dataset2 against dataset1, both as raw strings, using SemHash."""
|
| 57 |
# Build SemHash index on dataset1
|
| 58 |
semhash = SemHash.from_records(records=texts1, model=model)
|
|
|
|
| 60 |
return semhash.deduplicate(records=texts2, threshold=threshold)
|
| 61 |
|
| 62 |
|
| 63 |
+
def create_deduplicated_dataset(
|
| 64 |
+
original_dataset: Dataset, deduplicated_texts: list[str], text_column: str
|
| 65 |
+
) -> Dataset:
|
| 66 |
+
"""Create a new dataset with only the deduplicated texts."""
|
| 67 |
+
# Create a mapping from text to original row
|
| 68 |
+
text_to_row = {row[text_column]: row for row in original_dataset}
|
| 69 |
+
|
| 70 |
+
# Build new dataset with deduplicated texts
|
| 71 |
+
deduplicated_rows = []
|
| 72 |
+
for text in deduplicated_texts:
|
| 73 |
+
if text in text_to_row:
|
| 74 |
+
deduplicated_rows.append(text_to_row[text])
|
| 75 |
+
|
| 76 |
+
return Dataset.from_list(deduplicated_rows)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
def perform_deduplication(
|
| 80 |
deduplication_type: str,
|
| 81 |
dataset1_name: str,
|
|
|
|
| 85 |
dataset2_split: str = "",
|
| 86 |
dataset2_text_column: str = "",
|
| 87 |
threshold: float = default_threshold,
|
| 88 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
| 89 |
):
|
| 90 |
"""
|
| 91 |
Perform deduplication on one or two datasets using SemHash. This function
|
|
|
|
| 95 |
threshold = float(threshold)
|
| 96 |
|
| 97 |
# Load Dataset 1
|
| 98 |
+
texts1, dataset1 = load_dataset_texts(
|
| 99 |
+
dataset1_name, dataset1_split, dataset1_text_column
|
| 100 |
+
)
|
| 101 |
|
| 102 |
if deduplication_type == "Single dataset":
|
| 103 |
# Single-dataset deduplication
|
|
|
|
| 104 |
result = deduplicate_single_dataset(texts1, threshold=threshold)
|
| 105 |
|
| 106 |
+
# Sort all duplicates by score (ascending for least similar)
|
| 107 |
for duprec in result.duplicates:
|
| 108 |
+
duprec.duplicates.sort(key=lambda x: x[1])
|
| 109 |
+
|
| 110 |
+
# Create deduplicated dataset
|
| 111 |
+
deduplicated_dataset = create_deduplicated_dataset(
|
| 112 |
+
dataset1, result.deduplicated, dataset1_text_column
|
| 113 |
+
)
|
| 114 |
|
| 115 |
# Summarize results
|
| 116 |
num_duplicates = len(result.duplicates)
|
| 117 |
deduplicated_count = len(result.deduplicated)
|
| 118 |
total_docs = len(texts1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
# Create examples table
|
| 121 |
+
examples_table = None
|
| 122 |
if num_duplicates > 0:
|
|
|
|
|
|
|
| 123 |
# Only show duplicates that actually have near-duplicate records
|
| 124 |
+
duplicates_with_data = [
|
| 125 |
+
duprec for duprec in result.duplicates if duprec.duplicates
|
| 126 |
+
]
|
| 127 |
+
|
| 128 |
+
# sort duplicates by score (ascending for least similar)
|
| 129 |
+
for duprec in result.duplicates:
|
| 130 |
+
duprec.duplicates.sort(key=lambda x: x[1])
|
| 131 |
+
|
| 132 |
if duplicates_with_data:
|
| 133 |
+
# Create table data for the 5 least similar examples
|
| 134 |
+
table_data = []
|
| 135 |
for duprec in duplicates_with_data[:5]:
|
| 136 |
dup_text = duprec.record
|
| 137 |
orig_text, score = duprec.duplicates[0]
|
| 138 |
+
table_data.append(
|
| 139 |
+
[
|
| 140 |
+
orig_text[:200] + "..."
|
| 141 |
+
if len(orig_text) > 200
|
| 142 |
+
else orig_text,
|
| 143 |
+
dup_text[:200] + "..."
|
| 144 |
+
if len(dup_text) > 200
|
| 145 |
+
else dup_text,
|
| 146 |
+
f"{score:.4f}",
|
| 147 |
+
]
|
| 148 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
examples_table = pd.DataFrame(
|
| 151 |
+
table_data,
|
| 152 |
+
columns=["Original Text", "Duplicate Text", "Similarity Score"],
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Show success info with stats
|
| 156 |
+
gr.Info(
|
| 157 |
+
f"Deduplication completed! Found {num_duplicates} duplicates. "
|
| 158 |
+
f"Dataset reduced from {total_docs} to {deduplicated_count} unique documents."
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Return table with visibility update
|
| 162 |
+
if examples_table is not None and not examples_table.empty:
|
| 163 |
+
return deduplicated_dataset, gr.update(
|
| 164 |
+
visible=True, value=examples_table
|
| 165 |
+
)
|
| 166 |
+
else:
|
| 167 |
+
return deduplicated_dataset, gr.update(visible=False)
|
| 168 |
|
| 169 |
else:
|
| 170 |
# Cross-dataset deduplication
|
| 171 |
+
texts2, dataset2 = load_dataset_texts(
|
| 172 |
+
dataset2_name, dataset2_split, dataset2_text_column
|
| 173 |
+
)
|
| 174 |
|
|
|
|
| 175 |
result = deduplicate_two_datasets(texts1, texts2, threshold=threshold)
|
| 176 |
|
| 177 |
+
# Sort duplicates by score (ascending for least similar)
|
| 178 |
for duprec in result.duplicates:
|
| 179 |
+
duprec.duplicates.sort(key=lambda x: x[1])
|
| 180 |
+
|
| 181 |
+
# Create deduplicated dataset from dataset2
|
| 182 |
+
deduplicated_dataset = create_deduplicated_dataset(
|
| 183 |
+
dataset2, result.deduplicated, dataset2_text_column
|
| 184 |
+
)
|
| 185 |
|
| 186 |
num_duplicates = len(result.duplicates)
|
| 187 |
total_docs2 = len(texts2)
|
| 188 |
deduplicated_count = len(result.deduplicated)
|
| 189 |
|
| 190 |
+
# Create examples table
|
| 191 |
+
examples_table = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
if num_duplicates > 0:
|
| 193 |
+
# Again, only show duplicates that have records
|
| 194 |
+
duplicates_with_data = [
|
| 195 |
+
duprec for duprec in result.duplicates if duprec.duplicates
|
| 196 |
+
]
|
| 197 |
if duplicates_with_data:
|
| 198 |
+
# Create table data for the 5 least similar examples
|
| 199 |
+
table_data = []
|
| 200 |
for duprec in duplicates_with_data[:5]:
|
| 201 |
+
dup_text = duprec.record
|
| 202 |
orig_text, score = duprec.duplicates[0]
|
| 203 |
+
table_data.append(
|
| 204 |
+
[
|
| 205 |
+
orig_text[:200] + "..."
|
| 206 |
+
if len(orig_text) > 200
|
| 207 |
+
else orig_text,
|
| 208 |
+
dup_text[:200] + "..."
|
| 209 |
+
if len(dup_text) > 200
|
| 210 |
+
else dup_text,
|
| 211 |
+
f"{score:.4f}",
|
| 212 |
+
]
|
| 213 |
)
|
| 214 |
+
|
| 215 |
+
examples_table = pd.DataFrame(
|
| 216 |
+
table_data,
|
| 217 |
+
columns=[
|
| 218 |
+
"Original Text (Dataset 1)",
|
| 219 |
+
"Duplicate Text (Dataset 2)",
|
| 220 |
+
"Similarity Score",
|
| 221 |
+
],
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# Show success info with stats
|
| 225 |
+
gr.Info(
|
| 226 |
+
f"Deduplication completed! Found {num_duplicates} duplicates in Dataset 2. "
|
| 227 |
+
f"Dataset reduced from {total_docs2} to {deduplicated_count} unique documents."
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# Return table with visibility update
|
| 231 |
+
if examples_table is not None and not examples_table.empty:
|
| 232 |
+
return deduplicated_dataset, gr.update(
|
| 233 |
+
visible=True, value=examples_table
|
| 234 |
+
)
|
| 235 |
else:
|
| 236 |
+
return deduplicated_dataset, gr.update(visible=False)
|
| 237 |
+
|
| 238 |
+
except Exception as e:
|
| 239 |
+
gr.Error(f"An error occurred during deduplication: {str(e)}")
|
| 240 |
+
return None, gr.update(visible=False)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def push_to_hub(
|
| 244 |
+
deduplicated_dataset: Dataset,
|
| 245 |
+
output_dataset_name: str,
|
| 246 |
+
oauth_profile: gr.OAuthProfile | None,
|
| 247 |
+
oauth_token: gr.OAuthToken | None,
|
| 248 |
+
progress: gr.Progress = gr.Progress(),
|
| 249 |
+
) -> str:
|
| 250 |
+
"""Push the deduplicated dataset to Hugging Face Hub."""
|
| 251 |
+
if oauth_token is None:
|
| 252 |
+
raise gr.Error("Please log in with Hugging Face to push datasets to the Hub.")
|
| 253 |
+
|
| 254 |
+
if not output_dataset_name.strip():
|
| 255 |
+
raise gr.Error("Please provide a dataset name.")
|
| 256 |
|
| 257 |
+
if deduplicated_dataset is None:
|
| 258 |
+
raise gr.Error(
|
| 259 |
+
"No deduplicated dataset available. Please run deduplication first."
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
try:
|
| 263 |
+
progress(0.1, desc="Preparing dataset...")
|
| 264 |
+
|
| 265 |
+
# Determine the full dataset name (username/dataset_name)
|
| 266 |
+
username = oauth_profile.username if oauth_profile else None
|
| 267 |
+
if "/" not in output_dataset_name and username:
|
| 268 |
+
full_dataset_name = f"{username}/{output_dataset_name}"
|
| 269 |
+
else:
|
| 270 |
+
full_dataset_name = output_dataset_name
|
| 271 |
+
|
| 272 |
+
progress(0.3, desc="Pushing to Hub...")
|
| 273 |
+
|
| 274 |
+
# Push to hub using the OAuth token
|
| 275 |
+
deduplicated_dataset.push_to_hub(
|
| 276 |
+
full_dataset_name, token=oauth_token.token, private=False
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
progress(1.0, desc="Complete!")
|
| 280 |
+
|
| 281 |
+
gr.Info(
|
| 282 |
+
f"Successfully pushed deduplicated dataset with {len(deduplicated_dataset)} rows to the Hub!"
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
return (
|
| 286 |
+
f"✅ **Dataset published:** [{full_dataset_name}]"
|
| 287 |
+
f"(https://huggingface.co/datasets/{full_dataset_name})"
|
| 288 |
+
)
|
| 289 |
|
| 290 |
except Exception as e:
|
| 291 |
+
raise gr.Error(f"Failed to push dataset to Hub: {str(e)}")
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def get_user_info(oauth_profile: gr.OAuthProfile | None) -> str:
|
| 295 |
+
"""Display user login status."""
|
| 296 |
+
if oauth_profile is None:
|
| 297 |
+
return "Not logged in. Please log in to push datasets to the Hub."
|
| 298 |
+
return f"Logged in as: **{oauth_profile.username}**"
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def update_push_button_state(oauth_profile: gr.OAuthProfile | None):
|
| 302 |
+
"""Update the push button state based on login status."""
|
| 303 |
+
is_logged_in = oauth_profile is not None
|
| 304 |
+
return gr.update(interactive=is_logged_in)
|
| 305 |
|
| 306 |
|
| 307 |
# --- Gradio App ---
|
| 308 |
+
with gr.Blocks(
|
| 309 |
+
theme=gr.themes.Ocean(), css="#status_output { height: 50px; overflow: auto; }"
|
| 310 |
+
) as demo:
|
| 311 |
+
gr.Markdown("# SemDedup-My-Dataset: Semantic Text Deduplication Using SemHash")
|
| 312 |
gr.Markdown("""
|
| 313 |
This demo showcases **semantic deduplication** using [SemHash](https://github.com/MinishLab/semhash) for HuggingFace datasets, using a [Model2Vec](https://github.com/MinishLab/model2vec) encoder.
|
| 314 |
It can be used to identify duplicate texts within a **single dataset** or across **two datasets**.
|
| 315 |
You can adjust the similarity threshold to control the strictness of the deduplication.
|
| 316 |
|
|
|
|
|
|
|
| 317 |
""")
|
| 318 |
|
| 319 |
deduplication_type = gr.Radio(
|
|
|
|
| 324 |
|
| 325 |
with gr.Row():
|
| 326 |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
| 327 |
+
dataset1_split = gr.Textbox(
|
| 328 |
+
value=default_dataset1_split, label="Dataset 1 Split"
|
| 329 |
+
)
|
| 330 |
+
dataset1_text_column = gr.Textbox(
|
| 331 |
+
value=default_text_column, label="Text Column Name"
|
| 332 |
+
)
|
| 333 |
|
| 334 |
dataset2_inputs = gr.Column(visible=True)
|
| 335 |
with dataset2_inputs:
|
| 336 |
with gr.Row():
|
| 337 |
+
dataset2_name = gr.Textbox(
|
| 338 |
+
value=default_dataset_name, label="Dataset 2 Name"
|
| 339 |
+
)
|
| 340 |
+
dataset2_split = gr.Textbox(
|
| 341 |
+
value=default_dataset2_split, label="Dataset 2 Split"
|
| 342 |
+
)
|
| 343 |
+
dataset2_text_column = gr.Textbox(
|
| 344 |
+
value=default_text_column, label="Text Column Name"
|
| 345 |
+
)
|
| 346 |
|
| 347 |
+
threshold = gr.Slider(
|
| 348 |
+
0.0, 1.0, value=default_threshold, label="Similarity Threshold"
|
| 349 |
+
)
|
| 350 |
|
| 351 |
with gr.Row():
|
| 352 |
+
compute_button = gr.Button("Deduplicate", variant="primary")
|
| 353 |
|
| 354 |
status_output = gr.Markdown(elem_id="status_output")
|
| 355 |
+
|
| 356 |
+
# Examples table
|
| 357 |
+
examples_table = gr.Dataframe(
|
| 358 |
+
headers=["Original Text", "Duplicate Text", "Similarity Score"],
|
| 359 |
+
datatype=["str", "str", "str"],
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
# Hidden state to store the deduplicated dataset
|
| 363 |
+
deduplicated_dataset_state = gr.State()
|
| 364 |
+
|
| 365 |
+
# Output dataset configuration
|
| 366 |
+
gr.Markdown("## Push Deduplicated Dataset to Hub")
|
| 367 |
+
with gr.Row():
|
| 368 |
+
with gr.Column():
|
| 369 |
+
output_dataset_name = gr.Textbox(
|
| 370 |
+
label="Output Dataset Name",
|
| 371 |
+
placeholder="my-deduplicated-dataset",
|
| 372 |
+
info="Will be saved as username/dataset-name",
|
| 373 |
+
)
|
| 374 |
+
with gr.Column():
|
| 375 |
+
push_button = gr.Button(
|
| 376 |
+
"Push to Hub", variant="secondary", interactive=False
|
| 377 |
+
)
|
| 378 |
+
login_button = gr.LoginButton()
|
| 379 |
+
|
| 380 |
+
# Login section - moved below push to hub
|
| 381 |
+
with gr.Row():
|
| 382 |
+
user_info = gr.Markdown()
|
| 383 |
+
push_output = gr.Markdown()
|
| 384 |
|
| 385 |
def update_visibility(choice: str):
|
| 386 |
return gr.update(visible=(choice == "Cross-dataset"))
|
| 387 |
|
| 388 |
+
deduplication_type.change(
|
| 389 |
+
update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# Update user info and button state when page loads or login status changes
|
| 393 |
+
demo.load(get_user_info, inputs=None, outputs=user_info)
|
| 394 |
+
demo.load(update_push_button_state, inputs=None, outputs=push_button)
|
| 395 |
+
login_button.click(get_user_info, inputs=None, outputs=user_info)
|
| 396 |
+
login_button.click(update_push_button_state, inputs=None, outputs=push_button)
|
| 397 |
|
| 398 |
compute_button.click(
|
| 399 |
fn=perform_deduplication,
|
|
|
|
| 407 |
dataset2_text_column,
|
| 408 |
threshold,
|
| 409 |
],
|
| 410 |
+
outputs=[deduplicated_dataset_state, examples_table],
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
push_button.click(
|
| 414 |
+
fn=push_to_hub,
|
| 415 |
+
inputs=[
|
| 416 |
+
deduplicated_dataset_state,
|
| 417 |
+
output_dataset_name,
|
| 418 |
+
],
|
| 419 |
+
outputs=push_output,
|
| 420 |
)
|
| 421 |
|
| 422 |
demo.launch()
|
pyproject.toml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "semantic-deduplication"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Add your description here"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.11"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"datasets>=3.6.0",
|
| 9 |
+
"gradio[oauth]>=5.32.1",
|
| 10 |
+
"huggingface-hub>=0.32.3",
|
| 11 |
+
"model2vec>=0.5.0",
|
| 12 |
+
"numpy>=2.2.6",
|
| 13 |
+
"semhash>=0.3.0",
|
| 14 |
+
"tqdm>=4.67.1",
|
| 15 |
+
]
|
requirements.txt
CHANGED
|
@@ -1,5 +1,8 @@
|
|
| 1 |
-
|
| 2 |
-
numpy
|
| 3 |
datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
tqdm
|
| 5 |
|
|
|
|
| 1 |
+
gradio
|
|
|
|
| 2 |
datasets
|
| 3 |
+
semhash
|
| 4 |
+
model2vec
|
| 5 |
+
huggingface_hub
|
| 6 |
+
numpy
|
| 7 |
tqdm
|
| 8 |
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|