File size: 9,578 Bytes
25d2eb7 2827b8a 7a1cd7a a81fb12 b54da62 f5eb405 95530b9 c8fad0f b54da62 393e68a 3b4c438 f5eb405 b54da62 58d8f1a 7a1cd7a ed5b7bd 7a1cd7a 73a84b9 ed5b7bd b54da62 95530b9 7a1cd7a b54da62 4f0286f 24f7d5b 2827b8a ed5b7bd b54da62 ed5b7bd f5eb405 3bd0812 b54da62 95530b9 24f7d5b f5eb405 b54da62 95530b9 b54da62 2a0be82 b54da62 2258895 c58907b 3bd0812 b54da62 5422464 5d96b3d c8fad0f b54da62 c8fad0f 5422464 3bd0812 95530b9 c58907b 95530b9 b54da62 95530b9 24f7d5b b54da62 c58907b 95530b9 b54da62 2a0be82 b54da62 2258895 c58907b 39a5b1c 5d96b3d c8fad0f b54da62 c8fad0f 39a5b1c 95530b9 f5eb405 6b0e834 39a5b1c c58907b b54da62 365d622 b54da62 24f7d5b b54da62 24f7d5b 4f0286f b54da62 4f0286f b54da62 4f0286f 95530b9 b54da62 4f0286f b54da62 4f0286f 95530b9 b54da62 4f0286f 95530b9 2f9e086 b54da62 2f9e086 1a5f99b c58907b 4f0286f 24f7d5b b54da62 4f0286f 95530b9 4f0286f c58907b 4f0286f c58907b 4f0286f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
from datasets import load_dataset
from difflib import ndiff
from semhash import SemHash
from semhash.datamodels import DeduplicationResult
from model2vec import StaticModel
# Default parameters
default_dataset_name = "SetFit/amazon_massive_scenario_en-US"
default_dataset1_split = "train"
default_dataset2_split = "test"
default_text_column = "text"
default_threshold = 0.9
# Load the model to use
model = StaticModel.from_pretrained("minishlab/potion-base-8M")
def display_word_differences(x: str, y: str) -> str:
"""
Display the word-level differences between two texts, formatted to avoid
misinterpretation of Markdown syntax.
"""
diff = ndiff(x.split(), y.split())
formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
return f"```\n{formatted_diff}\n```"
def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
"""Load texts from a specified dataset split."""
ds = load_dataset(dataset_name, split=dataset_split)
return [example[text_column] for example in ds]
def deduplicate_single_dataset(texts: list[str], threshold: float) -> DeduplicationResult:
"""Deduplicate within a single dataset using SemHash, treating each text as a raw string record."""
# Build a SemHash index from the raw texts
semhash = SemHash.from_records(records=texts, model=model)
# Deduplicate the entire dataset
return semhash.self_deduplicate(threshold=threshold)
def deduplicate_two_datasets(texts1: list[str], texts2: list[str], threshold: float) -> DeduplicationResult:
"""Deduplicate dataset2 against dataset1, both as raw strings, using SemHash."""
# Build SemHash index on dataset1
semhash = SemHash.from_records(records=texts1, model=model)
# Deduplicate texts2 against dataset1
return semhash.deduplicate(records=texts2, threshold=threshold)
def perform_deduplication(
deduplication_type: str,
dataset1_name: str,
dataset1_split: str,
dataset1_text_column: str,
dataset2_name: str = "",
dataset2_split: str = "",
dataset2_text_column: str = "",
threshold: float = default_threshold,
progress: gr.Progress = gr.Progress(track_tqdm=True)
):
"""
Perform deduplication on one or two datasets using SemHash. This function
streams status updates to Gradio for user feedback.
"""
try:
threshold = float(threshold)
# Load Dataset 1
yield "Loading Dataset 1...", ""
texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
if deduplication_type == "Single dataset":
# Single-dataset deduplication
yield "Deduplicating within Dataset 1 (SemHash)...", ""
result = deduplicate_single_dataset(texts1, threshold=threshold)
# Sort all duplicates in descending order of their highest score
for duprec in result.duplicates:
duprec.duplicates.sort(key=lambda x: x[1], reverse=True)
# Summarize results
num_duplicates = len(result.duplicates)
deduplicated_count = len(result.deduplicated)
total_docs = len(texts1)
result_text = (
f"**Total documents (Dataset 1):** {total_docs}\n\n"
f"**Duplicates found:** {num_duplicates}\n\n"
f"**Unique documents after deduplication:** {deduplicated_count}\n\n"
+ "-" * 50 + "\n\n"
)
# Show example duplicates
if num_duplicates > 0:
result_text += "**Example duplicates:**\n\n"
# Only show duplicates that actually have near-duplicate records
duplicates_with_data = [duprec for duprec in result.duplicates if duprec.duplicates]
if duplicates_with_data:
for duprec in duplicates_with_data[:5]:
dup_text = duprec.record
orig_text, score = duprec.duplicates[0]
differences = display_word_differences(orig_text, dup_text)
result_text += (
f"**Original:**\n{orig_text}\n\n"
f"**Duplicate:**\n{dup_text}\n\n"
f"**Similarity Score:** {score:.4f}\n"
f"**Differences:**\n{differences}\n"
+ "-" * 50 + "\n\n"
)
else:
result_text += "No near-duplicate details available.\n\n"
else:
result_text += "No duplicates found."
yield "Deduplication completed.", result_text
else:
# Cross-dataset deduplication
yield "Loading Dataset 2...", ""
texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
yield "Deduplicating Dataset 2 against Dataset 1 (SemHash)...", ""
result = deduplicate_two_datasets(texts1, texts2, threshold=threshold)
# Sort duplicates in descending order of their highest score
for duprec in result.duplicates:
duprec.duplicates.sort(key=lambda x: x[1], reverse=True)
num_duplicates = len(result.duplicates)
total_docs2 = len(texts2)
deduplicated_count = len(result.deduplicated)
result_text = (
f"**Total documents in {dataset2_name}/{dataset2_split}:** {total_docs2}\n\n"
f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
f"**Unique documents after deduplication:** {deduplicated_count}\n\n"
+ "-" * 50 + "\n\n"
)
if num_duplicates > 0:
result_text += "**Example duplicates from Dataset 2:**\n\n"
# Again, only show duplicates that actually have near-duplicate records
duplicates_with_data = [duprec for duprec in result.duplicates if duprec.duplicates]
if duplicates_with_data:
for duprec in duplicates_with_data[:5]:
dup_text = duprec.record # The "duplicate" text from dataset2
orig_text, score = duprec.duplicates[0]
differences = display_word_differences(orig_text, dup_text)
result_text += (
f"**Original (Dataset 1):**\n{orig_text}\n\n"
f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
f"**Similarity Score:** {score:.4f}\n"
f"**Differences:**\n{differences}\n"
+ "-" * 50 + "\n\n"
)
else:
result_text += "No near-duplicate details available.\n\n"
else:
result_text += "No duplicates found."
yield "Deduplication completed.", result_text
except Exception as e:
yield f"An error occurred: {e}", ""
raise e
# --- Gradio App ---
with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; overflow: auto; }") as demo:
gr.Markdown("# Semantic Text Deduplication Using SemHash")
gr.Markdown("""
This demo showcases **semantic deduplication** using [SemHash](https://github.com/MinishLab/semhash) for HuggingFace datasets, using a [Model2Vec](https://github.com/MinishLab/model2vec) encoder.
It can be used to identify duplicate texts within a **single dataset** or across **two datasets**.
You can adjust the similarity threshold to control the strictness of the deduplication.
**NOTE**: This demo runs on a free CPU backend, so it may be slow for large datasets.
For faster results, please run the code locally.
""")
deduplication_type = gr.Radio(
choices=["Cross-dataset", "Single dataset"],
label="Deduplication Type",
value="Cross-dataset", # default
)
with gr.Row():
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
dataset2_inputs = gr.Column(visible=True)
with dataset2_inputs:
with gr.Row():
dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
with gr.Row():
compute_button = gr.Button("Deduplicate")
status_output = gr.Markdown(elem_id="status_output")
result_output = gr.Markdown()
def update_visibility(choice: str):
return gr.update(visible=(choice == "Cross-dataset"))
deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
compute_button.click(
fn=perform_deduplication,
inputs=[
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name,
dataset2_split,
dataset2_text_column,
threshold,
],
outputs=[status_output, result_output],
)
demo.launch()
|