naomi / agent.py
Mimi
asdf
49184e1
raw
history blame
6 kB
"""
This script defines the Naomi class, which utilizes the Llama model for chatbot interactions.
It includes methods for responding to user input while maintaining a chat history.
Keyword arguments:
- kwargs: Additional keyword arguments for candidate information.
Return:
- An instance of the Naomi class, capable of handling chatbot interactions.
"""
import time
from data_utils import end_session, load_agent_from_hf, new_user
from llama_cpp import Llama
from llama_cpp.llama_tokenizer import LlamaHFTokenizer
# default decoding params initiation
SEED = 42
MODEL_CARD = "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF"
MODEL_PATH = "Meta-Llama-3.1-8B-Instruct-Q3_K_XL.gguf"
base_model_id = "meta-llama/Llama-3.1-8B-Instruct"
new_chat_template = """{{- bos_token }}
{%- if custom_tools is defined %}
{%- set tools = custom_tools %}
{%- endif %}
{%- if not tools_in_user_message is defined %}
{%- set tools_in_user_message = true %}
{%- endif %}
{%- if not date_string is defined %}
{%- set date_string = "26 Jul 2024" %}
{%- endif %}
{%- if not tools is defined %}
{%- set tools = none %}
{%- endif %}
{#- This block extracts the system message, so we can slot it into the right place. #}
{%- if messages[0]['role'] == 'system' %}
{%- set system_message = messages[0]['content']|trim %}
{%- set messages = messages[1:] %}
{#- System message + builtin tools #}
{{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
{%- if builtin_tools is defined or tools is not none %}
{{- "Environment: ipython\n" }}
{%- endif %}
{%- if builtin_tools is defined %}
{{- "Tools: " + builtin_tools | reject('equalto', 'code_interpreter') | join(", ") + "\n\n"}}
{%- endif %}
{%- if tools is not none and not tools_in_user_message %}
{{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
{{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
{{- "Do not use variables.\n\n" }}
{%- for t in tools %}
{{- t | tojson(indent=4) }}
{{- "\n\n" }}
{%- endfor %}
{%- endif %}
{{- system_message }}
{{- "<|eot_id|>" }}
{%- else %}
{%- set system_message = "" %}
{%- endif %}
{%- for message in messages %}
{%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
{%- elif 'tool_calls' in message %}
{%- if not message.tool_calls|length == 1 %}
{{- raise_exception("This model only supports single tool-calls at once!") }}
{%- endif %}
{%- set tool_call = message.tool_calls[0].function %}
{%- if builtin_tools is defined and tool_call.name in builtin_tools %}
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
{{- "<|python_tag|>" + tool_call.name + ".call(" }}
{%- for arg_name, arg_val in tool_call.arguments | items %}
{{- arg_name + '="' + arg_val + '"' }}
{%- if not loop.last %}
{{- ", " }}
{%- endif %}
{%- endfor %}
{{- ")" }}
{%- else %}
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
{{- '{"name": "' + tool_call.name + '", ' }}
{{- '"parameters": ' }}
{{- tool_call.arguments | tojson }}
{{- "}" }}
{%- endif %}
{%- if builtin_tools is defined %}
{#- This means we're in ipython mode #}
{{- "<|eom_id|>" }}
{%- else %}
{{- "<|eot_id|>" }}
{%- endif %}
{%- elif message.role == "tool" or message.role == "ipython" %}
{{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
{%- if message.content is mapping or message.content is iterable %}
{{- message.content | tojson }}
{%- else %}
{{- message.content }}
{%- endif %}
{{- "<|eot_id|>" }}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
{%- endif %}"""
class Naomi:
def __init__(self, **kwargs):
# init dataclasses
self.user = new_user(**kwargs)
self.agent = load_agent_from_hf('Naomi')
# load the model
self.model = Llama.from_pretrained(
repo_id=MODEL_CARD,
filename=MODEL_PATH,
tokenizer=LlamaHFTokenizer.from_pretrained(base_model_id)
)
self.model.tokenizer_.hf_tokenizer.chat_template = new_chat_template
# load the agents prompts
sys_msg = self.agent.system_prompt(self.user)
self.chat_history = self.model.tokenizer_.hf_tokenizer.apply_chat_template(
sys_msg,
tokenize=False
)
def respond(self, user_input: dict, **kwargs):
""" Invoked during stream. """
# user msg handling
format_user_input = self.model.tokenizer_.hf_tokenizer.apply_chat_template([user_input], tokenize=False, add_generation_prompt=False)
self.chat_history += format_user_input
# agent msg results + clean
response = self.model(self.chat_history, **kwargs)
output = "".join(response['choices'][0]['text'].split('\n\n')[1:])
# update history
self.chat_history += self.model.tokenizer_.hf_tokenizer.apply_chat_template([{'role': 'assistant', 'content': output}], tokenize=False, add_generation_prompt=False)
return output
@staticmethod
def gen(response):
""" Generator that yields responses in chat sessions. """
for word in response.split():
yield word + " "
time.sleep(0.05)
def end(self, chat_messages):
self.chat = chat_messages
end_session(self)