Spaces:
Running
Running
| """ | |
| This script defines the Naomi class, which utilizes the Llama model for chatbot interactions. | |
| It includes methods for responding to user input while maintaining a chat history. | |
| Keyword arguments: | |
| - kwargs: Additional keyword arguments for candidate information. | |
| Return: | |
| - An instance of the Naomi class, capable of handling chatbot interactions. | |
| """ | |
| import time | |
| from data_utils import end_session, load_agent_from_hf, new_user | |
| from llama_cpp import Llama | |
| from llama_cpp.llama_tokenizer import LlamaHFTokenizer | |
| # default decoding params initiation | |
| SEED = 42 | |
| MODEL_CARD = "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF" | |
| MODEL_PATH = "Meta-Llama-3.1-8B-Instruct-Q3_K_XL.gguf" | |
| base_model_id = "meta-llama/Llama-3.1-8B-Instruct" | |
| new_chat_template = """{{- bos_token }} | |
| {%- if custom_tools is defined %} | |
| {%- set tools = custom_tools %} | |
| {%- endif %} | |
| {%- if not tools_in_user_message is defined %} | |
| {%- set tools_in_user_message = true %} | |
| {%- endif %} | |
| {%- if not date_string is defined %} | |
| {%- set date_string = "26 Jul 2024" %} | |
| {%- endif %} | |
| {%- if not tools is defined %} | |
| {%- set tools = none %} | |
| {%- endif %} | |
| {#- This block extracts the system message, so we can slot it into the right place. #} | |
| {%- if messages[0]['role'] == 'system' %} | |
| {%- set system_message = messages[0]['content']|trim %} | |
| {%- set messages = messages[1:] %} | |
| {#- System message + builtin tools #} | |
| {{- "<|start_header_id|>system<|end_header_id|>\n\n" }} | |
| {%- if builtin_tools is defined or tools is not none %} | |
| {{- "Environment: ipython\n" }} | |
| {%- endif %} | |
| {%- if builtin_tools is defined %} | |
| {{- "Tools: " + builtin_tools | reject('equalto', 'code_interpreter') | join(", ") + "\n\n"}} | |
| {%- endif %} | |
| {%- if tools is not none and not tools_in_user_message %} | |
| {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }} | |
| {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }} | |
| {{- "Do not use variables.\n\n" }} | |
| {%- for t in tools %} | |
| {{- t | tojson(indent=4) }} | |
| {{- "\n\n" }} | |
| {%- endfor %} | |
| {%- endif %} | |
| {{- system_message }} | |
| {{- "<|eot_id|>" }} | |
| {%- else %} | |
| {%- set system_message = "" %} | |
| {%- endif %} | |
| {%- for message in messages %} | |
| {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %} | |
| {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }} | |
| {%- elif 'tool_calls' in message %} | |
| {%- if not message.tool_calls|length == 1 %} | |
| {{- raise_exception("This model only supports single tool-calls at once!") }} | |
| {%- endif %} | |
| {%- set tool_call = message.tool_calls[0].function %} | |
| {%- if builtin_tools is defined and tool_call.name in builtin_tools %} | |
| {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}} | |
| {{- "<|python_tag|>" + tool_call.name + ".call(" }} | |
| {%- for arg_name, arg_val in tool_call.arguments | items %} | |
| {{- arg_name + '="' + arg_val + '"' }} | |
| {%- if not loop.last %} | |
| {{- ", " }} | |
| {%- endif %} | |
| {%- endfor %} | |
| {{- ")" }} | |
| {%- else %} | |
| {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}} | |
| {{- '{"name": "' + tool_call.name + '", ' }} | |
| {{- '"parameters": ' }} | |
| {{- tool_call.arguments | tojson }} | |
| {{- "}" }} | |
| {%- endif %} | |
| {%- if builtin_tools is defined %} | |
| {#- This means we're in ipython mode #} | |
| {{- "<|eom_id|>" }} | |
| {%- else %} | |
| {{- "<|eot_id|>" }} | |
| {%- endif %} | |
| {%- elif message.role == "tool" or message.role == "ipython" %} | |
| {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }} | |
| {%- if message.content is mapping or message.content is iterable %} | |
| {{- message.content | tojson }} | |
| {%- else %} | |
| {{- message.content }} | |
| {%- endif %} | |
| {{- "<|eot_id|>" }} | |
| {%- endif %} | |
| {%- endfor %} | |
| {%- if add_generation_prompt %} | |
| {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }} | |
| {%- endif %}""" | |
| class Naomi: | |
| def __init__(self, **kwargs): | |
| # init dataclasses | |
| self.user = new_user(**kwargs) | |
| self.agent = load_agent_from_hf('Naomi') | |
| # load the model | |
| self.model = Llama.from_pretrained( | |
| repo_id=MODEL_CARD, | |
| filename=MODEL_PATH, | |
| tokenizer=LlamaHFTokenizer.from_pretrained(base_model_id) | |
| ) | |
| self.model.tokenizer_.hf_tokenizer.chat_template = new_chat_template | |
| # load the agents prompts | |
| sys_msg = self.agent.system_prompt(self.user) | |
| self.chat_history = self.model.tokenizer_.hf_tokenizer.apply_chat_template( | |
| sys_msg, | |
| tokenize=False | |
| ) | |
| def respond(self, user_input: dict, **kwargs): | |
| """ Invoked during stream. """ | |
| # user msg handling | |
| format_user_input = self.model.tokenizer_.hf_tokenizer.apply_chat_template([user_input], tokenize=False, add_generation_prompt=False) | |
| self.chat_history += format_user_input | |
| # agent msg results + clean | |
| response = self.model(self.chat_history, **kwargs) | |
| output = "".join(response['choices'][0]['text'].split('\n\n')[1:]) | |
| # update history | |
| self.chat_history += self.model.tokenizer_.hf_tokenizer.apply_chat_template([{'role': 'assistant', 'content': output}], tokenize=False, add_generation_prompt=False) | |
| return output | |
| def gen(response): | |
| """ Generator that yields responses in chat sessions. """ | |
| for word in response.split(): | |
| yield word + " " | |
| time.sleep(0.05) | |
| def end(self, chat_messages): | |
| self.chat = chat_messages | |
| end_session(self) | |