Spaces:
Running
Running
File size: 8,435 Bytes
5ed7b6c 39a8462 5ed7b6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
from abc import ABC
import pandas as pd
from enum import Enum
from uuid import uuid4
from datetime import datetime
from dataclasses import dataclass, field
from langchain_core.prompts import PromptTemplate
from datasets import load_dataset, DatasetDict, Dataset, concatenate_datasets
from typing import List, Dict, Any, Literal, Optional
username = 'mimipynb'
class HFConfig(Enum):
chat = username + '/naomi-dialogue'
users = username + '/naomi-users'
results = username + '/naomi-eval'
hub = username + '/agentNet'
pepe = username + '/agentNetHuman'
def load_agent_from_hf(agent_name):
""" Loads agent from HF """
botnet = load_dataset(HFConfig.hub.value, token=True, split='train').to_pandas()
chatbot = dict(zip(botnet.columns, *botnet[botnet['name'] == agent_name].values))
chatbot.pop('agent_type')
return Agent(**chatbot)
def load_main_user():
""" Loads main user from HF. To be removed / changed. """
pepes = load_dataset(HFConfig.pepe.value, token=True, split='train').to_pandas()
pepe = dict(zip(pepes.columns, *pepes[pepes['user_type'] == 'main'].values))
pepe.pop('user_type')
pepe.pop('relation_type')
pepe.pop('repo_id')
pepe.pop('input_file_path')
pepe.pop('output_file_path')
return User(**pepe)
def uploader(repo_id, new_data):
""" Appends new streaming sessions to HF space. """
original = load_dataset(repo_id=repo_id, token=True)
if isinstance(original, DatasetDict):
original = original['train']
concat = concatenate_datasets([original, new_data])
if len(concat) != len(original) + len(new_data):
raise ValueError(f"Expected concatenated data to be to be the sum of {len(original)} and {len(new_data)} but received {len(concat)} ")
concat.push_to_hub(
repo_id=repo_id,
private=True
)
print(f"Finished pushing to {repo_id}")
def end_session(naomi):
""" Data Handlers to run end of chat session. """
chat = naomi.chat.messages
user = naomi.user
results = naomi.results
uploader(HFConfig.chat.value, Dataset.from_pandas(chat))
uploader(HFConfig.users.value, Dataset.from_dict(user))
uploader(HFConfig.results.value, Dataset.from_pandas(results))
chat_messages = [
{'role': 'user', 'content': 'Hello!'},
{'role': 'assistant', 'content': 'Hi there! How can I assist you today?'},
{'role': 'user', 'content': 'I have a question about my order.'},
{'role': 'assistant', 'content': 'Sure! What would you like to know about your order?'},
{'role': 'user', 'content': 'When will it be delivered?'},
{'role': 'assistant', 'content': 'Let me check that for you. Can you provide me with your order number?'},
{'role': 'user', 'content': 'My order number is 123456.'},
{'role': 'assistant', 'content': 'Thank you! Your order is scheduled to be delivered on March 5th.'},
{'role': 'user', 'content': 'Great! Thank you for your help.'},
{'role': 'assistant', 'content': 'You’re welcome! If you have any more questions, feel free to ask.'},
{'role': 'user', 'content': 'Will do! Have a nice day.'},
{'role': 'assistant', 'content': 'You too! Take care!'}
]
@dataclass
class ChatMessage:
role: str
content: str
timestamp: str = field(default=datetime.now().isoformat())
inference: Dict[str, Any] = field(default_factory=dict)
def preprocess(self):
# Example preprocessing: strip whitespace and convert to lowercase
self.content = self.content.strip().lower()
def collect_features(self):
""" TODO:
- connect to classifiers / pipeline
- connect to agentDial
"""
self.inference['positive'] = 0.05
self.inference['negative'] = 0.05
self.inference['neutral'] = 0.90
self.inference['intent'] = 'greeting'
self.inference['mood'] = 'neutral'
def __post_init__(self):
""" Workflow of inferencing tools. """
self.preprocess()
self.collect_features()
@dataclass
class ChatSession:
_messages: List[ChatMessage] = field(default_factory=list)
session_id: str = field(default=uuid4().hex)
def __iter__(self):
# Iterates only the role and content for tokenizing.
for item in self._messages:
yield {
'role': item.role,
'content': item.content
}
def __getitem__(self, index):
""" Only returns the role and content for the requested index."""
if -len(self._messages) <= index < len(self._messages):
msg = self._messages[index]
return {
'role': msg.role,
'content': msg.content
}
raise IndexError
@property
def messages(self):
""" Returns dataframe. Includes inferenced features. """
data = pd.DataFrame(self._messages)
data['session_id'] = self.session_id
return data
def add_message(self, role: Literal['user', 'role', 'system'], content: str):
""" Adds messages to the chat sessions. """
message = ChatMessage(role=role, content=content)
self._messages.append(message)
@dataclass
class ProfileBase(ABC):
def __post_init__(self):
""" Base checks """
if hasattr(self, 'name') and self.name:
self.name = self.name.lower().capitalize()
if hasattr(self, 'prompt'):
prompt = PromptTemplate.from_template(self.prompt)
self.prompt = prompt
@dataclass
class Agent(ProfileBase):
"""Setup Agent Profile or Adds Agent to Bot Family"""
name: str
prompt: str
data: dict
def system_prompt(self, candidate):
try:
main_user = load_main_user()
prompt = self.prompt.invoke(
input=dict(
user_name=main_user.name,
user_likes="\n".join(main_user.likes),
user_dislikes="\n".join(main_user.dislikes),
candidate_details=candidate.format_profile(),
**self.data
)
)
print(f"Parsed prompt: {prompt}. Full input: \n{prompt.text}")
return [{'role': 'system', 'content': prompt.text}]
except Exception as e:
print(e)
raise
@dataclass
class Contact(ProfileBase):
"""User's Metaclasses -- Social"""
instagram: Optional[str] = None
email: Optional[str] = None
mobile: Optional[str] = None
@dataclass
class Biography:
"""User's Metaclasses -- Biography / FAQs"""
dob: Optional[str] = None
location: Optional[str] = None
mbti_label: Optional[str] = None
education: Optional[str] = None
occupation: Optional[str] = None
@dataclass
class User(Biography, Contact):
"""User's Datahandler for account creation. Metaclass: Contact"""
name: str = field(default_factory=str)
likes: List[str] = field(default_factory=list)
dislikes: List[str] = field(default_factory=list)
@dataclass
class Candidate(Contact, Biography):
"""Interviewing Candidate Accessor for Agents roleplaying as Interviewers."""
name: str = field(default=str)
id: str = field(default=uuid4().hex)
def format_profile(self):
return "".join([f"{key}: {val}\n" for key, val in self.__dict__.items() if val is not None or key not in ('output_file_path', 'input_file_path', 'id')])
def new_user(**kwargs):
""" Process inputs collected from frontend to backend. Returns Candidate. """
contact_type = kwargs.get('contact_type', None)
if contact_type is not None:
contact = Contact.__match_args__[contact_type] if isinstance(contact_type, int) else contact_type
kwargs.update({contact: kwargs.get('contact', None)})
kwargs.pop('contact_type')
kwargs.pop('contact')
return Candidate(**kwargs)
if __name__ == "__main__":
# Example usage for chat session
"""
chat_session = ChatSession()
for msg in chat_messages:
chat_session.add_message(msg['role'], msg['content'])
print(chat_session.messages)
"""
# user = load_main_user()
# print(user)
test_user = {
'name': 'mike',
'contact_type': 1,
'contact': '[email protected]',
'dob': '29/12/1800',
'location': 'north korea',
'intake_submission': True
}
candy = new_user(**test_user)
print(candy)
|