File size: 6,004 Bytes
39be96e
 
 
 
 
 
 
 
 
 
 
 
 
5ed7b6c
 
39be96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ed7b6c
 
 
39be96e
 
 
 
 
 
 
5ed7b6c
39be96e
5ed7b6c
39be96e
5ed7b6c
 
39be96e
 
5ed7b6c
39be96e
 
5ed7b6c
39be96e
 
 
 
 
 
5ed7b6c
39be96e
 
5ed7b6c
 
39be96e
 
 
5ed7b6c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
This script defines the Naomi class, which utilizes the Llama model for chatbot interactions.
It includes methods for responding to user input while maintaining a chat history.

Keyword arguments:
    - kwargs: Additional keyword arguments for candidate information.

Return:
    - An instance of the Naomi class, capable of handling chatbot interactions.
"""


import time
from data_utils import end_session, load_agent_from_hf, new_user

from llama_cpp import Llama
from llama_cpp.llama_tokenizer import LlamaHFTokenizer

# default decoding params initiation
SEED = 42
MODEL_CARD = "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF"
MODEL_PATH = "Meta-Llama-3.1-8B-Instruct-Q3_K_XL.gguf"
base_model_id = "meta-llama/Llama-3.1-8B-Instruct"
new_chat_template = """{{- bos_token }}
{%- if custom_tools is defined %}
    {%- set tools = custom_tools %}
{%- endif %}
{%- if not tools_in_user_message is defined %}
    {%- set tools_in_user_message = true %}
{%- endif %}
{%- if not date_string is defined %}
    {%- set date_string = "26 Jul 2024" %}
{%- endif %}
{%- if not tools is defined %}
    {%- set tools = none %}
{%- endif %}

{#- This block extracts the system message, so we can slot it into the right place. #}
{%- if messages[0]['role'] == 'system' %}
    {%- set system_message = messages[0]['content']|trim %}
    {%- set messages = messages[1:] %}
    {#- System message + builtin tools #}
    {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
    {%- if builtin_tools is defined or tools is not none %}
        {{- "Environment: ipython\n" }}
    {%- endif %}
    {%- if builtin_tools is defined %}
        {{- "Tools: " + builtin_tools | reject('equalto', 'code_interpreter') | join(", ") + "\n\n"}}
    {%- endif %}
    {%- if tools is not none and not tools_in_user_message %}
        {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
        {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
        {{- "Do not use variables.\n\n" }}
        {%- for t in tools %}
            {{- t | tojson(indent=4) }}
            {{- "\n\n" }}
        {%- endfor %}
    {%- endif %}
    {{- system_message }}
    {{- "<|eot_id|>" }}
{%- else %}
    {%- set system_message = "" %}
{%- endif %}

{%- for message in messages %}
    {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
        {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
    {%- elif 'tool_calls' in message %}
        {%- if not message.tool_calls|length == 1 %}
            {{- raise_exception("This model only supports single tool-calls at once!") }}
        {%- endif %}
        {%- set tool_call = message.tool_calls[0].function %}
        {%- if builtin_tools is defined and tool_call.name in builtin_tools %}
            {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
            {{- "<|python_tag|>" + tool_call.name + ".call(" }}
            {%- for arg_name, arg_val in tool_call.arguments | items %}
                {{- arg_name + '="' + arg_val + '"' }}
                {%- if not loop.last %}
                    {{- ", " }}
                {%- endif %}
                {%- endfor %}
            {{- ")" }}
        {%- else  %}
            {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
            {{- '{"name": "' + tool_call.name + '", ' }}
            {{- '"parameters": ' }}
            {{- tool_call.arguments | tojson }}
            {{- "}" }}
        {%- endif %}
        {%- if builtin_tools is defined %}
            {#- This means we're in ipython mode #}
            {{- "<|eom_id|>" }}
        {%- else %}
            {{- "<|eot_id|>" }}
        {%- endif %}
    {%- elif message.role == "tool" or message.role == "ipython" %}
        {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
        {%- if message.content is mapping or message.content is iterable %}
            {{- message.content | tojson }}
        {%- else %}
            {{- message.content }}
        {%- endif %}
        {{- "<|eot_id|>" }}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
{%- endif %}"""

class Naomi:
    def __init__(self, **kwargs):
        # init dataclasses
        self.user = new_user(**kwargs)
        self.agent = load_agent_from_hf('Naomi')
        # load the model
        self.model = Llama.from_pretrained(
	        repo_id=MODEL_CARD,
	        filename=MODEL_PATH,
            tokenizer=LlamaHFTokenizer.from_pretrained(base_model_id)
        )
        self.model.tokenizer_.hf_tokenizer.chat_template = new_chat_template

        # load the agents prompts
        sys_msg = self.agent.system_prompt(self.user)
        self.chat_history = self.model.tokenizer_.hf_tokenizer.apply_chat_template(
            sys_msg,
            tokenize=False
        )

    def respond(self, user_input: dict, **kwargs):
        """ Invoked during stream. """
        # user msg handling
        format_user_input = self.model.tokenizer_.hf_tokenizer.apply_chat_template([user_input], tokenize=False, add_generation_prompt=False)
        self.chat_history += format_user_input
        # agent msg results + clean
        response = self.model(self.chat_history, **kwargs)
        output = "".join(response['choices'][0]['text'].split('\n\n')[1:])
        # update history
        self.chat_history += self.model.tokenizer_.hf_tokenizer.apply_chat_template([{'role': 'assistant', 'content': output}], tokenize=False, add_generation_prompt=False)

        return output

    @staticmethod
    def gen(response):
        """ Generator that yields responses in chat sessions. """
        for word in response.split():
            yield word + " "
            time.sleep(0.05)

    def end(self, chat_messages):
        self.chat = chat_messages
        end_session(self)