Spaces:
Build error
Build error
| import streamlit as st | |
| from transformers import pipeline | |
| from gtts import gTTS | |
| import os | |
| from PIL import Image | |
| # Load models | |
| def load_models(): | |
| image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
| storyteller = pipeline("text-generation", model="databricks/dolly-v2-3b", max_new_tokens=300) | |
| return image_to_text, storyteller | |
| # Process image to text | |
| def generate_caption(image, image_to_text): | |
| result = image_to_text(image) | |
| return result[0]["generated_text"] if result else "No caption generated." | |
| # Generate a narrative story | |
| def generate_story(text, storyteller): | |
| prompt = f"Write a short and engaging story inspired by this image description: {text}" | |
| story = storyteller(prompt, do_sample=True, temperature=0.7, max_new_tokens=300) | |
| return story[0]["generated_text"] if story else "No story generated." | |
| # Convert text to speech | |
| def text_to_speech(text, filename="output.mp3"): | |
| tts = gTTS(text) | |
| tts.save(filename) | |
| return filename | |
| # Main Streamlit app | |
| def main(): | |
| st.title("AI-Powered Image Captioning and Storytelling") | |
| image_to_text, storyteller = load_models() | |
| uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "png", "jpeg"]) | |
| if uploaded_file is not None: | |
| image = Image.open(uploaded_file) | |
| st.image(image, caption="Uploaded Image", use_container_width=True) | |
| with st.spinner("Generating caption..."): | |
| caption = generate_caption(image, image_to_text) | |
| st.write("### Image Caption:") | |
| st.write(caption) | |
| with st.spinner("Generating story..."): | |
| story = generate_story(caption, storyteller) | |
| st.write("### Generated Story:") | |
| st.write(story) | |
| with st.spinner("Generating speech..."): | |
| audio_file = text_to_speech(story) | |
| st.audio(audio_file, format="audio/mp3") | |
| if __name__ == "__main__": | |
| main() | |