miki5799's picture
Extract jupyter notebook and nlp4web-codebase contents to hf shitspace repo
5270fb9
from typing import Dict, List
from nlp4web_codebase.ir.data_loaders import IRDataset, Split
from nlp4web_codebase.ir.data_loaders.dm import Document, Query, QRel
from datasets import load_dataset
import joblib
@(joblib.Memory(".cache").cache)
def load_sciq(verbose: bool = False) -> IRDataset:
train = load_dataset("allenai/sciq", split="train")
validation = load_dataset("allenai/sciq", split="validation")
test = load_dataset("allenai/sciq", split="test")
data = {Split.train: train, Split.dev: validation, Split.test: test}
# Each duplicated record is the same to each other:
df = train.to_pandas() + validation.to_pandas() + test.to_pandas()
for question, group in df.groupby("question"):
assert len(set(group["support"].tolist())) == len(group)
assert len(set(group["correct_answer"].tolist())) == len(group)
# Build:
corpus = []
queries = []
split2qrels: Dict[str, List[dict]] = {}
question2id = {}
support2id = {}
for split, rows in data.items():
if verbose:
print(f"|raw_{split}|", len(rows))
split2qrels[split] = []
for i, row in enumerate(rows):
example_id = f"{split}-{i}"
support: str = row["support"]
if len(support.strip()) == 0:
continue
question = row["question"]
if len(support.strip()) == 0:
continue
if support in support2id:
continue
else:
support2id[support] = example_id
if question in question2id:
continue
else:
question2id[question] = example_id
doc = {"collection_id": example_id, "text": support}
query = {"query_id": example_id, "text": row["question"]}
qrel = {
"query_id": example_id,
"collection_id": example_id,
"relevance": 1,
"answer": row["correct_answer"],
}
corpus.append(Document(**doc))
queries.append(Query(**query))
split2qrels[split].append(QRel(**qrel))
# Assembly and return:
return IRDataset(corpus=corpus, queries=queries, split2qrels=split2qrels)
if __name__ == "__main__":
# python -m nlp4web_codebase.ir.data_loaders.sciq
import ujson
import time
start = time.time()
dataset = load_sciq(verbose=True)
print(f"Loading costs: {time.time() - start}s")
print(ujson.dumps(dataset.get_stats(), indent=4))
# ________________________________________________________________________________
# [Memory] Calling __main__--home-kwang-research-nlp4web-ir-exercise-nlp4web-nlp4web-ir-data_loaders-sciq.load_sciq...
# load_sciq(verbose=True)
# |raw_train| 11679
# |raw_dev| 1000
# |raw_test| 1000
# ________________________________________________________load_sciq - 7.3s, 0.1min
# Loading costs: 7.260092735290527s
# {
# "|corpus|": 12160,
# "|queries|": 12160,
# "|qrels-train|": 10409,
# "|qrels-dev|": 875,
# "|qrels-test|": 876
# }