Spaces:
Sleeping
Sleeping
| ############################################################## | |
| # PDF Chat | |
| # | |
| # Mike Pastor February 2024 | |
| import streamlit as st | |
| from dotenv import load_dotenv | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from InstructorEmbedding import INSTRUCTOR | |
| from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.chains import ConversationalRetrievalChain | |
| from htmlTemplates import css, bot_template, user_template | |
| from langchain.llms import HuggingFaceHub | |
| def get_pdf_text(pdf_docs): | |
| text = "" | |
| for pdf in pdf_docs: | |
| pdf_reader = PdfReader(pdf) | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| return text | |
| # Chunk size and overlap must not exceed the models capacity! | |
| # | |
| def get_text_chunks(text): | |
| text_splitter = CharacterTextSplitter( | |
| separator="\n", | |
| chunk_size=800, # 1000 | |
| chunk_overlap=200, | |
| length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def get_vectorstore(text_chunks): | |
| # embeddings = OpenAIEmbeddings() | |
| # pip install InstructorEmbedding | |
| # pip install sentence-transformers==2.2.2 | |
| embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
| # from InstructorEmbedding import INSTRUCTOR | |
| # model = INSTRUCTOR('hkunlp/instructor-xl') | |
| # sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments" | |
| # instruction = "Represent the Science title:" | |
| # embeddings = model.encode([[instruction, sentence]]) | |
| # embeddings = model.encode(text_chunks) | |
| print('have Embeddings: ') | |
| # text_chunks="this is a test" | |
| # FAISS, Chroma and other vector databases | |
| # | |
| vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
| print('FAISS succeeds: ') | |
| return vectorstore | |
| def get_conversation_chain(vectorstore): | |
| # llm = ChatOpenAI() | |
| # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
| # google/bigbird-roberta-base facebook/bart-large | |
| llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512}) | |
| memory = ConversationBufferMemory( | |
| memory_key='chat_history', return_messages=True) | |
| conversation_chain = ConversationalRetrievalChain.from_llm( | |
| llm=llm, | |
| retriever=vectorstore.as_retriever(), | |
| memory=memory, | |
| ) | |
| return conversation_chain | |
| def handle_userinput(user_question): | |
| response = st.session_state.conversation({'question': user_question}) | |
| # response = st.session_state.conversation({'summarization': user_question}) | |
| st.session_state.chat_history = response['chat_history'] | |
| # st.empty() | |
| for i, message in enumerate(st.session_state.chat_history): | |
| if i % 2 == 0: | |
| st.write(user_template.replace( | |
| "{{MSG}}", message.content), unsafe_allow_html=True) | |
| else: | |
| st.write(bot_template.replace( | |
| "{{MSG}}", message.content), unsafe_allow_html=True) | |
| def main(): | |
| load_dotenv() | |
| st.set_page_config(page_title="MLP Chat with multiple PDFs", | |
| page_icon=":books:") | |
| st.write(css, unsafe_allow_html=True) | |
| if "conversation" not in st.session_state: | |
| st.session_state.conversation = None | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = None | |
| st.header("Mike's PDF Chat :books:") | |
| user_question = st.text_input("Ask a question about your documents:") | |
| if user_question: | |
| handle_userinput(user_question) | |
| # st.write( user_template, unsafe_allow_html=True) | |
| # st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True) | |
| # st.write(bot_template.replace( "{{MSG}}", "Hello human!"), unsafe_allow_html=True) | |
| with st.sidebar: | |
| st.subheader("Your documents") | |
| pdf_docs = st.file_uploader( | |
| "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
| # Upon button press | |
| if st.button("Process these files"): | |
| with st.spinner("Processing..."): | |
| ################################################################# | |
| # Track the overall time for file processing into Vectors | |
| # # | |
| from datetime import datetime | |
| global_now = datetime.now() | |
| global_current_time = global_now.strftime("%H:%M:%S") | |
| st.write("Vectorizing Files - Current Time =", global_current_time) | |
| # get pdf text | |
| raw_text = get_pdf_text(pdf_docs) | |
| # st.write(raw_text) | |
| # # get the text chunks | |
| text_chunks = get_text_chunks(raw_text) | |
| # st.write(text_chunks) | |
| # # create vector store | |
| vectorstore = get_vectorstore(text_chunks) | |
| # # create conversation chain | |
| st.session_state.conversation = get_conversation_chain(vectorstore) | |
| # Mission Complete! | |
| global_later = datetime.now() | |
| st.write("Files Vectorized - Total EXECUTION Time =", | |
| (global_later - global_now), global_later) | |
| if __name__ == '__main__': | |
| main() | |