Update app.py
Browse files
app.py
CHANGED
@@ -19,26 +19,81 @@ import time
|
|
19 |
app = Flask(__name__)
|
20 |
CORS(app)
|
21 |
|
22 |
-
# Initialize AI models
|
23 |
print("Loading AI models...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
print("Models loaded successfully!")
|
39 |
except Exception as e:
|
40 |
-
print(f"
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
# Meme templates and trending data
|
44 |
MEME_TEMPLATES = {
|
@@ -71,27 +126,66 @@ class MemeAI:
|
|
71 |
|
72 |
def analyze_image(self, image):
|
73 |
"""Analyze image and generate smart suggestions"""
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
"
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
def extract_keywords(self, text):
|
97 |
"""Extract meaningful keywords from image caption"""
|
@@ -149,20 +243,55 @@ class MemeAI:
|
|
149 |
|
150 |
def analyze_mood(self, text):
|
151 |
"""Analyze text mood for personalized suggestions"""
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
def get_trending_suggestions(self):
|
168 |
"""Generate suggestions based on trending topics"""
|
@@ -216,7 +345,12 @@ meme_ai = MemeAI()
|
|
216 |
|
217 |
@app.route('/health', methods=['GET'])
|
218 |
def health_check():
|
219 |
-
return jsonify({
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
@app.route('/analyze-image', methods=['POST'])
|
222 |
def analyze_image():
|
|
|
19 |
app = Flask(__name__)
|
20 |
CORS(app)
|
21 |
|
22 |
+
# Initialize AI models with fallback options
|
23 |
print("Loading AI models...")
|
24 |
+
|
25 |
+
# Global flags for model availability
|
26 |
+
MODELS_AVAILABLE = {
|
27 |
+
'caption': False,
|
28 |
+
'text_gen': False,
|
29 |
+
'sentiment': False
|
30 |
+
}
|
31 |
+
|
32 |
+
# Try to load models with fallbacks
|
33 |
try:
|
34 |
+
# Set cache directory with proper permissions
|
35 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
|
36 |
+
os.environ['HF_HOME'] = '/tmp/hf_cache'
|
37 |
|
38 |
+
# Create cache directories
|
39 |
+
os.makedirs('/tmp/transformers_cache', exist_ok=True)
|
40 |
+
os.makedirs('/tmp/hf_cache', exist_ok=True)
|
41 |
+
|
42 |
+
print("Attempting to load image captioning model...")
|
43 |
+
caption_processor = BlipProcessor.from_pretrained(
|
44 |
+
"Salesforce/blip-image-captioning-base",
|
45 |
+
cache_dir='/tmp/transformers_cache',
|
46 |
+
use_fast=False
|
47 |
+
)
|
48 |
+
caption_model = BlipForConditionalGeneration.from_pretrained(
|
49 |
+
"Salesforce/blip-image-captioning-base",
|
50 |
+
cache_dir='/tmp/transformers_cache'
|
51 |
+
)
|
52 |
+
MODELS_AVAILABLE['caption'] = True
|
53 |
+
print("β Image captioning model loaded")
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
print(f"β Image captioning model failed: {e}")
|
57 |
+
caption_processor = None
|
58 |
+
caption_model = None
|
59 |
+
|
60 |
+
try:
|
61 |
+
print("Attempting to load sentiment analyzer...")
|
62 |
+
sentiment_analyzer = pipeline(
|
63 |
+
"sentiment-analysis",
|
64 |
+
model="cardiffnlp/twitter-roberta-base-sentiment-latest",
|
65 |
+
cache_dir='/tmp/transformers_cache'
|
66 |
+
)
|
67 |
+
MODELS_AVAILABLE['sentiment'] = True
|
68 |
+
print("β Sentiment analyzer loaded")
|
69 |
|
70 |
+
except Exception as e:
|
71 |
+
print(f"β Sentiment analyzer failed: {e}")
|
72 |
+
# Use a lighter fallback model
|
73 |
+
try:
|
74 |
+
sentiment_analyzer = pipeline("sentiment-analysis", cache_dir='/tmp/transformers_cache')
|
75 |
+
MODELS_AVAILABLE['sentiment'] = True
|
76 |
+
print("β Fallback sentiment analyzer loaded")
|
77 |
+
except:
|
78 |
+
sentiment_analyzer = None
|
79 |
+
print("β All sentiment models failed")
|
80 |
+
|
81 |
+
try:
|
82 |
+
print("Attempting to load text generator...")
|
83 |
+
text_generator = pipeline(
|
84 |
+
"text-generation",
|
85 |
+
model="gpt2", # Lighter model
|
86 |
+
cache_dir='/tmp/transformers_cache'
|
87 |
+
)
|
88 |
+
MODELS_AVAILABLE['text_gen'] = True
|
89 |
+
print("β Text generator loaded")
|
90 |
|
|
|
91 |
except Exception as e:
|
92 |
+
print(f"β Text generator failed: {e}")
|
93 |
+
text_generator = None
|
94 |
+
|
95 |
+
print(f"Models loaded: {sum(MODELS_AVAILABLE.values())}/3")
|
96 |
+
print("Fallback systems enabled for failed models")
|
97 |
|
98 |
# Meme templates and trending data
|
99 |
MEME_TEMPLATES = {
|
|
|
126 |
|
127 |
def analyze_image(self, image):
|
128 |
"""Analyze image and generate smart suggestions"""
|
129 |
+
if MODELS_AVAILABLE['caption'] and caption_processor and caption_model:
|
130 |
+
try:
|
131 |
+
# Generate caption using AI model
|
132 |
+
inputs = caption_processor(image, return_tensors="pt")
|
133 |
+
out = caption_model.generate(**inputs, max_length=50)
|
134 |
+
caption = caption_processor.decode(out[0], skip_special_tokens=True)
|
135 |
+
|
136 |
+
# Extract key objects/concepts
|
137 |
+
keywords = self.extract_keywords(caption)
|
138 |
+
|
139 |
+
return {
|
140 |
+
"caption": caption,
|
141 |
+
"keywords": keywords,
|
142 |
+
"suggestions": self.generate_text_suggestions(keywords),
|
143 |
+
"ai_powered": True
|
144 |
+
}
|
145 |
+
except Exception as e:
|
146 |
+
print(f"AI image analysis error: {e}")
|
147 |
+
|
148 |
+
# Fallback to rule-based analysis
|
149 |
+
return self.analyze_image_fallback(image)
|
150 |
+
|
151 |
+
def analyze_image_fallback(self, image):
|
152 |
+
"""Fallback image analysis when AI models aren't available"""
|
153 |
+
# Simple image property analysis
|
154 |
+
width, height = image.size
|
155 |
+
mode = image.mode
|
156 |
+
|
157 |
+
# Basic heuristics
|
158 |
+
keywords = []
|
159 |
+
caption = "Image uploaded"
|
160 |
+
|
161 |
+
# Aspect ratio heuristics
|
162 |
+
aspect_ratio = width / height
|
163 |
+
if aspect_ratio > 1.5:
|
164 |
+
keywords.extend(["landscape", "wide", "horizontal"])
|
165 |
+
caption = "Wide image uploaded"
|
166 |
+
elif aspect_ratio < 0.7:
|
167 |
+
keywords.extend(["portrait", "vertical", "tall"])
|
168 |
+
caption = "Tall image uploaded"
|
169 |
+
else:
|
170 |
+
keywords.extend(["square", "balanced"])
|
171 |
+
caption = "Square image uploaded"
|
172 |
+
|
173 |
+
# Color mode heuristics
|
174 |
+
if mode == "RGBA":
|
175 |
+
keywords.append("transparent")
|
176 |
+
elif mode == "L":
|
177 |
+
keywords.extend(["grayscale", "black and white"])
|
178 |
+
|
179 |
+
# Add generic meme-friendly keywords
|
180 |
+
keywords.extend(["meme", "funny", "relatable"])
|
181 |
+
|
182 |
+
return {
|
183 |
+
"caption": caption,
|
184 |
+
"keywords": keywords[:5],
|
185 |
+
"suggestions": self.generate_text_suggestions(keywords),
|
186 |
+
"ai_powered": False,
|
187 |
+
"note": "Using fallback analysis - upgrade for AI-powered insights"
|
188 |
+
}
|
189 |
|
190 |
def extract_keywords(self, text):
|
191 |
"""Extract meaningful keywords from image caption"""
|
|
|
243 |
|
244 |
def analyze_mood(self, text):
|
245 |
"""Analyze text mood for personalized suggestions"""
|
246 |
+
if MODELS_AVAILABLE['sentiment'] and sentiment_analyzer:
|
247 |
+
try:
|
248 |
+
result = sentiment_analyzer(text)[0]
|
249 |
+
# Handle different sentiment model outputs
|
250 |
+
if 'label' in result:
|
251 |
+
mood = result['label'].lower()
|
252 |
+
# Convert labels to standard format
|
253 |
+
if 'pos' in mood or mood == 'positive':
|
254 |
+
mood = 'positive'
|
255 |
+
elif 'neg' in mood or mood == 'negative':
|
256 |
+
mood = 'negative'
|
257 |
+
else:
|
258 |
+
mood = 'neutral'
|
259 |
+
else:
|
260 |
+
mood = 'neutral'
|
261 |
+
|
262 |
+
confidence = result.get('score', 0.5)
|
263 |
+
|
264 |
+
mood_suggestions = {
|
265 |
+
'positive': ["You're killing it!", "Main character energy", "That's the spirit!", "Living your best life"],
|
266 |
+
'negative': ["This is fine", "Why are we here?", "Everything is chaos", "Big oof energy"],
|
267 |
+
'neutral': ["It be like that sometimes", "Just vibing", "No thoughts, head empty", "Existing peacefully"]
|
268 |
+
}
|
269 |
+
|
270 |
+
suggestions = mood_suggestions.get(mood, mood_suggestions['neutral'])
|
271 |
+
return suggestions + [f"When you're feeling {mood}"]
|
272 |
+
|
273 |
+
except Exception as e:
|
274 |
+
print(f"Sentiment analysis error: {e}")
|
275 |
+
|
276 |
+
# Fallback mood analysis
|
277 |
+
return self.analyze_mood_fallback(text)
|
278 |
+
|
279 |
+
def analyze_mood_fallback(self, text):
|
280 |
+
"""Fallback mood analysis using keyword matching"""
|
281 |
+
text_lower = text.lower()
|
282 |
+
|
283 |
+
positive_words = ['good', 'great', 'awesome', 'happy', 'love', 'best', 'amazing', 'wonderful']
|
284 |
+
negative_words = ['bad', 'awful', 'hate', 'worst', 'terrible', 'sad', 'angry', 'frustrated']
|
285 |
+
|
286 |
+
pos_count = sum(1 for word in positive_words if word in text_lower)
|
287 |
+
neg_count = sum(1 for word in negative_words if word in text_lower)
|
288 |
+
|
289 |
+
if pos_count > neg_count:
|
290 |
+
return ["You're killing it!", "Positive vibes only", "That energy though"]
|
291 |
+
elif neg_count > pos_count:
|
292 |
+
return ["This is fine", "We've all been there", "Mood honestly"]
|
293 |
+
else:
|
294 |
+
return ["It be like that", "Just existing", "Neutral chaos energy"]
|
295 |
|
296 |
def get_trending_suggestions(self):
|
297 |
"""Generate suggestions based on trending topics"""
|
|
|
345 |
|
346 |
@app.route('/health', methods=['GET'])
|
347 |
def health_check():
|
348 |
+
return jsonify({
|
349 |
+
"status": "healthy",
|
350 |
+
"timestamp": datetime.now().isoformat(),
|
351 |
+
"models_loaded": MODELS_AVAILABLE,
|
352 |
+
"ai_features": sum(MODELS_AVAILABLE.values())
|
353 |
+
})
|
354 |
|
355 |
@app.route('/analyze-image', methods=['POST'])
|
356 |
def analyze_image():
|