Spaces:
Paused
Paused
Upload 2 files
Browse files- app.py +672 -0
- requirements.txt +20 -0
app.py
ADDED
|
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
import os
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
import base64
|
| 5 |
+
import requests
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import subprocess
|
| 8 |
+
import shutil
|
| 9 |
+
import gc
|
| 10 |
+
import time
|
| 11 |
+
import json
|
| 12 |
+
import threading
|
| 13 |
+
|
| 14 |
+
import gradio as gr
|
| 15 |
+
from PIL import Image
|
| 16 |
+
from cachetools import LRUCache
|
| 17 |
+
import torch
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torchvision.transforms.functional as F
|
| 20 |
+
|
| 21 |
+
# FastAPI imports for enhanced frontend integration
|
| 22 |
+
from fastapi import FastAPI, HTTPException
|
| 23 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 24 |
+
from pydantic import BaseModel
|
| 25 |
+
from typing import Optional
|
| 26 |
+
import uvicorn
|
| 27 |
+
|
| 28 |
+
# T4 Medium GPU Optimizations
|
| 29 |
+
torch.backends.cudnn.benchmark = True
|
| 30 |
+
torch.backends.cuda.max_split_size_mb = 512
|
| 31 |
+
|
| 32 |
+
# API Models for FastAPI
|
| 33 |
+
class ImageRequest(BaseModel):
|
| 34 |
+
source_image: str # base64 string
|
| 35 |
+
shape_image: Optional[str] = None # base64 string
|
| 36 |
+
color_image: Optional[str] = None # base64 string
|
| 37 |
+
blending: str = "Article"
|
| 38 |
+
poisson_iters: int = 0
|
| 39 |
+
poisson_erosion: int = 15
|
| 40 |
+
|
| 41 |
+
class ImageResponse(BaseModel):
|
| 42 |
+
success: bool
|
| 43 |
+
result_image: Optional[str] = None # base64 string
|
| 44 |
+
message: str
|
| 45 |
+
|
| 46 |
+
# Download working face landmarks
|
| 47 |
+
def download_face_landmarks():
|
| 48 |
+
"""Download working dlib face landmarks predictor"""
|
| 49 |
+
landmarks_path = 'pretrained_models/ShapeAdaptor/shape_predictor_68_face_landmarks.dat'
|
| 50 |
+
|
| 51 |
+
if os.path.exists(landmarks_path) and os.path.getsize(landmarks_path) > 50000000:
|
| 52 |
+
print("Face landmarks already exists and appears valid")
|
| 53 |
+
return True
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
print("Downloading working face landmarks predictor...")
|
| 57 |
+
url = 'https://github.com/davisking/dlib-models/raw/master/shape_predictor_68_face_landmarks.dat.bz2'
|
| 58 |
+
|
| 59 |
+
os.makedirs(os.path.dirname(landmarks_path), exist_ok=True)
|
| 60 |
+
|
| 61 |
+
response = requests.get(url, stream=True, timeout=300)
|
| 62 |
+
response.raise_for_status()
|
| 63 |
+
|
| 64 |
+
import bz2
|
| 65 |
+
compressed_data = response.content
|
| 66 |
+
|
| 67 |
+
with open(landmarks_path, 'wb') as f:
|
| 68 |
+
f.write(bz2.decompress(compressed_data))
|
| 69 |
+
|
| 70 |
+
print(f"Face landmarks downloaded successfully ({os.path.getsize(landmarks_path)/1024/1024:.1f}MB)")
|
| 71 |
+
return True
|
| 72 |
+
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"Failed to download face landmarks: {e}")
|
| 75 |
+
return False
|
| 76 |
+
|
| 77 |
+
# Comprehensive model download for full accuracy
|
| 78 |
+
def download_all_missing_models():
|
| 79 |
+
"""Download ALL required models for full accuracy"""
|
| 80 |
+
|
| 81 |
+
all_required_models = {
|
| 82 |
+
'pretrained_models/ArcFace/backbone_ir50.pth': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/ArcFace/backbone_ir50.pth',
|
| 83 |
+
'pretrained_models/ArcFace/ir_se50.pth': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/ArcFace/ir_se50.pth',
|
| 84 |
+
'pretrained_models/BiSeNet/face_parsing_79999_iter.pth': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/BiSeNet/face_parsing_79999_iter.pth',
|
| 85 |
+
'pretrained_models/FeatureStyleEncoder/backbone.pth': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/FeatureStyleEncoder/backbone.pth',
|
| 86 |
+
'pretrained_models/FeatureStyleEncoder/psp_ffhq_encode.pt': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/FeatureStyleEncoder/psp_ffhq_encode.pt',
|
| 87 |
+
'pretrained_models/FeatureStyleEncoder/79999_iter.pth': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/FeatureStyleEncoder/79999_iter.pth',
|
| 88 |
+
'pretrained_models/FeatureStyleEncoder/143_enc.pth': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/FeatureStyleEncoder/143_enc.pth',
|
| 89 |
+
'pretrained_models/encoder4editing/e4e_ffhq_encode.pt': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/encoder4editing/e4e_ffhq_encode.pt',
|
| 90 |
+
'pretrained_models/sean_checkpoints/CelebA-HQ_pretrained/latest_net_G.pth': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/sean_checkpoints/CelebA-HQ_pretrained/latest_net_G.pth',
|
| 91 |
+
'pretrained_models/PostProcess/pp_model.pth': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/PostProcess/pp_model.pth',
|
| 92 |
+
'pretrained_models/PostProcess/latent_avg.pt': 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/PostProcess/latent_avg.pt',
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
print("Checking for missing models for full accuracy...")
|
| 96 |
+
|
| 97 |
+
missing_models = []
|
| 98 |
+
existing_models = []
|
| 99 |
+
|
| 100 |
+
for model_path, url in all_required_models.items():
|
| 101 |
+
if os.path.exists(model_path):
|
| 102 |
+
existing_models.append(os.path.basename(model_path))
|
| 103 |
+
else:
|
| 104 |
+
missing_models.append((model_path, url))
|
| 105 |
+
|
| 106 |
+
if existing_models:
|
| 107 |
+
print(f"Found existing models: {', '.join(existing_models)}")
|
| 108 |
+
|
| 109 |
+
if missing_models:
|
| 110 |
+
print(f"Downloading {len(missing_models)} missing models for full accuracy...")
|
| 111 |
+
|
| 112 |
+
for i, (model_path, url) in enumerate(missing_models, 1):
|
| 113 |
+
try:
|
| 114 |
+
model_name = os.path.basename(model_path)
|
| 115 |
+
print(f"[{i}/{len(missing_models)}] Downloading: {model_name}")
|
| 116 |
+
|
| 117 |
+
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
| 118 |
+
|
| 119 |
+
start_time = time.time()
|
| 120 |
+
response = requests.get(url, stream=True, timeout=600)
|
| 121 |
+
response.raise_for_status()
|
| 122 |
+
|
| 123 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 124 |
+
downloaded = 0
|
| 125 |
+
|
| 126 |
+
with open(model_path, 'wb') as f:
|
| 127 |
+
for chunk in response.iter_content(chunk_size=1024*1024):
|
| 128 |
+
if chunk:
|
| 129 |
+
f.write(chunk)
|
| 130 |
+
downloaded += len(chunk)
|
| 131 |
+
|
| 132 |
+
if total_size > 100*1024*1024 and downloaded % (50*1024*1024) == 0:
|
| 133 |
+
progress = (downloaded / total_size) * 100 if total_size > 0 else 0
|
| 134 |
+
print(f" Progress: {progress:.1f}% ({downloaded/1024/1024:.1f}MB/{total_size/1024/1024:.1f}MB)")
|
| 135 |
+
|
| 136 |
+
elapsed = time.time() - start_time
|
| 137 |
+
print(f" Downloaded: {model_name} ({downloaded/1024/1024:.1f}MB in {elapsed:.1f}s)")
|
| 138 |
+
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(f" Failed to download {model_name}: {e}")
|
| 141 |
+
continue
|
| 142 |
+
else:
|
| 143 |
+
print("All models already present!")
|
| 144 |
+
|
| 145 |
+
return True
|
| 146 |
+
|
| 147 |
+
def download_mask_generator_separately():
|
| 148 |
+
"""Download large mask_generator.pth file separately"""
|
| 149 |
+
mask_path = 'pretrained_models/ShapeAdaptor/mask_generator.pth'
|
| 150 |
+
|
| 151 |
+
if os.path.exists(mask_path):
|
| 152 |
+
print("Mask generator already exists")
|
| 153 |
+
return True
|
| 154 |
+
|
| 155 |
+
try:
|
| 156 |
+
print("Downloading mask_generator.pth (919MB)...")
|
| 157 |
+
url = 'https://huggingface.co/AIRI-Institute/HairFastGAN/resolve/main/pretrained_models/ShapeAdaptor/mask_generator.pth'
|
| 158 |
+
|
| 159 |
+
os.makedirs(os.path.dirname(mask_path), exist_ok=True)
|
| 160 |
+
|
| 161 |
+
response = requests.get(url, stream=True, timeout=900)
|
| 162 |
+
response.raise_for_status()
|
| 163 |
+
|
| 164 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 165 |
+
downloaded = 0
|
| 166 |
+
|
| 167 |
+
with open(mask_path, 'wb') as f:
|
| 168 |
+
for chunk in response.iter_content(chunk_size=2*1024*1024):
|
| 169 |
+
if chunk:
|
| 170 |
+
f.write(chunk)
|
| 171 |
+
downloaded += len(chunk)
|
| 172 |
+
|
| 173 |
+
if downloaded % (100*1024*1024) == 0:
|
| 174 |
+
progress = (downloaded / total_size) * 100 if total_size > 0 else 0
|
| 175 |
+
print(f" Mask Generator Progress: {progress:.1f}% ({downloaded/1024/1024:.1f}MB/{total_size/1024/1024:.1f}MB)")
|
| 176 |
+
|
| 177 |
+
print(f"Successfully downloaded mask_generator.pth ({downloaded/1024/1024:.1f}MB)")
|
| 178 |
+
return True
|
| 179 |
+
|
| 180 |
+
except Exception as e:
|
| 181 |
+
print(f"Failed to download mask_generator.pth: {e}")
|
| 182 |
+
return False
|
| 183 |
+
|
| 184 |
+
# Download all models
|
| 185 |
+
download_all_missing_models()
|
| 186 |
+
download_mask_generator_separately()
|
| 187 |
+
download_face_landmarks()
|
| 188 |
+
|
| 189 |
+
# Direct HairFast imports
|
| 190 |
+
try:
|
| 191 |
+
from hair_swap import HairFast, get_parser
|
| 192 |
+
HAIRFAST_AVAILABLE = True
|
| 193 |
+
print("HairFast successfully imported!")
|
| 194 |
+
except ImportError as e:
|
| 195 |
+
print(f"HairFast import failed: {e}")
|
| 196 |
+
HAIRFAST_AVAILABLE = False
|
| 197 |
+
|
| 198 |
+
try:
|
| 199 |
+
from utils.shape_predictor import align_face
|
| 200 |
+
ALIGN_AVAILABLE = True
|
| 201 |
+
print("Face alignment available!")
|
| 202 |
+
except ImportError as e:
|
| 203 |
+
print(f"Face alignment not available: {e}")
|
| 204 |
+
ALIGN_AVAILABLE = False
|
| 205 |
+
|
| 206 |
+
# Global variables
|
| 207 |
+
hair_fast_model = None
|
| 208 |
+
align_cache = LRUCache(maxsize=10)
|
| 209 |
+
|
| 210 |
+
def get_gpu_memory():
|
| 211 |
+
"""Check GPU memory for optimization"""
|
| 212 |
+
if torch.cuda.is_available():
|
| 213 |
+
return torch.cuda.get_device_properties(0).total_memory / 1e9
|
| 214 |
+
return 0
|
| 215 |
+
|
| 216 |
+
def optimize_for_t4():
|
| 217 |
+
"""T4 GPU specific optimizations"""
|
| 218 |
+
if torch.cuda.is_available():
|
| 219 |
+
gpu_memory = get_gpu_memory()
|
| 220 |
+
print(f"GPU Memory: {gpu_memory:.1f}GB")
|
| 221 |
+
|
| 222 |
+
if gpu_memory < 20:
|
| 223 |
+
torch.cuda.empty_cache()
|
| 224 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
| 225 |
+
print("T4 optimizations applied")
|
| 226 |
+
|
| 227 |
+
def check_model_completeness():
|
| 228 |
+
"""Check which critical models are available"""
|
| 229 |
+
critical_models = {
|
| 230 |
+
'StyleGAN': 'pretrained_models/StyleGAN/ffhq.pt',
|
| 231 |
+
'Blending': 'pretrained_models/Blending/checkpoint.pth',
|
| 232 |
+
'Rotate': 'pretrained_models/Rotate/rotate_best.pth',
|
| 233 |
+
'PostProcess': 'pretrained_models/PostProcess/pp_model.pth',
|
| 234 |
+
'FeatureEncoder': 'pretrained_models/FeatureStyleEncoder/143_enc.pth',
|
| 235 |
+
'E4E': 'pretrained_models/encoder4editing/e4e_ffhq_encode.pt',
|
| 236 |
+
'SEAN': 'pretrained_models/sean_checkpoints/CelebA-HQ_pretrained/latest_net_G.pth',
|
| 237 |
+
'ShapeAdaptor': 'pretrained_models/ShapeAdaptor/mask_generator.pth',
|
| 238 |
+
}
|
| 239 |
+
|
| 240 |
+
available_models = {}
|
| 241 |
+
for name, path in critical_models.items():
|
| 242 |
+
available_models[name] = os.path.exists(path)
|
| 243 |
+
|
| 244 |
+
return available_models
|
| 245 |
+
|
| 246 |
+
def initialize_hairfast_original():
|
| 247 |
+
"""Initialize HairFast exactly like original - use pure defaults"""
|
| 248 |
+
global hair_fast_model
|
| 249 |
+
|
| 250 |
+
if not HAIRFAST_AVAILABLE:
|
| 251 |
+
print("HairFast not available")
|
| 252 |
+
return False
|
| 253 |
+
|
| 254 |
+
try:
|
| 255 |
+
print("Initializing HairFast with original default arguments...")
|
| 256 |
+
|
| 257 |
+
optimize_for_t4()
|
| 258 |
+
|
| 259 |
+
available_models = check_model_completeness()
|
| 260 |
+
print("Available models:", {k: v for k, v in available_models.items() if v})
|
| 261 |
+
|
| 262 |
+
parser = get_parser()
|
| 263 |
+
args = parser.parse_args([])
|
| 264 |
+
|
| 265 |
+
hair_fast_model = HairFast(args)
|
| 266 |
+
|
| 267 |
+
available_count = sum(available_models.values())
|
| 268 |
+
total_count = len(available_models)
|
| 269 |
+
accuracy_percentage = (available_count / total_count) * 100
|
| 270 |
+
|
| 271 |
+
print(f"HairFast initialized with original defaults ({accuracy_percentage:.1f}% accuracy)")
|
| 272 |
+
|
| 273 |
+
torch.cuda.empty_cache()
|
| 274 |
+
gc.collect()
|
| 275 |
+
|
| 276 |
+
return True
|
| 277 |
+
|
| 278 |
+
except Exception as e:
|
| 279 |
+
print(f"HairFast initialization failed: {e}")
|
| 280 |
+
hair_fast_model = None
|
| 281 |
+
torch.cuda.empty_cache()
|
| 282 |
+
return False
|
| 283 |
+
|
| 284 |
+
def get_bytes(img):
|
| 285 |
+
"""EXACT copy of original get_bytes function"""
|
| 286 |
+
if img is None:
|
| 287 |
+
return img
|
| 288 |
+
buffered = BytesIO()
|
| 289 |
+
img.save(buffered, format="JPEG")
|
| 290 |
+
return buffered.getvalue()
|
| 291 |
+
|
| 292 |
+
def bytes_to_image(image: bytes) -> Image.Image:
|
| 293 |
+
"""EXACT copy of original bytes_to_image function"""
|
| 294 |
+
image = Image.open(BytesIO(image))
|
| 295 |
+
return image
|
| 296 |
+
|
| 297 |
+
def base64_to_image(base64_string):
|
| 298 |
+
"""Convert base64 string to PIL Image with error handling"""
|
| 299 |
+
try:
|
| 300 |
+
if base64_string.startswith('data:image'):
|
| 301 |
+
base64_string = base64_string.split(',')[1]
|
| 302 |
+
image_bytes = base64.b64decode(base64_string)
|
| 303 |
+
image = Image.open(BytesIO(image_bytes))
|
| 304 |
+
if image.mode != 'RGB':
|
| 305 |
+
image = image.convert('RGB')
|
| 306 |
+
return image
|
| 307 |
+
except Exception as e:
|
| 308 |
+
print(f"Error converting base64 to image: {e}")
|
| 309 |
+
return None
|
| 310 |
+
|
| 311 |
+
def image_to_base64(image):
|
| 312 |
+
"""Convert PIL Image to base64 string with maximum quality"""
|
| 313 |
+
if image is None:
|
| 314 |
+
return None
|
| 315 |
+
buffered = BytesIO()
|
| 316 |
+
# Use PNG for lossless quality
|
| 317 |
+
image.save(buffered, format="PNG", optimize=False)
|
| 318 |
+
img_bytes = buffered.getvalue()
|
| 319 |
+
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
|
| 320 |
+
return f"data:image/png;base64,{img_base64}"
|
| 321 |
+
|
| 322 |
+
def center_crop(img):
|
| 323 |
+
"""EXACT copy of original center_crop function"""
|
| 324 |
+
width, height = img.size
|
| 325 |
+
side = min(width, height)
|
| 326 |
+
left = (width - side) / 2
|
| 327 |
+
top = (height - side) / 2
|
| 328 |
+
right = (width + side) / 2
|
| 329 |
+
bottom = (height + side) / 2
|
| 330 |
+
img = img.crop((left, top, right, bottom))
|
| 331 |
+
return img
|
| 332 |
+
|
| 333 |
+
def resize(name):
|
| 334 |
+
"""Fixed resize function with proper size handling"""
|
| 335 |
+
def resize_inner(img, align):
|
| 336 |
+
global align_cache
|
| 337 |
+
if name in align and ALIGN_AVAILABLE:
|
| 338 |
+
img_hash = hashlib.md5(get_bytes(img)).hexdigest()
|
| 339 |
+
if img_hash not in align_cache:
|
| 340 |
+
try:
|
| 341 |
+
aligned_imgs = align_face(img, return_tensors=False)
|
| 342 |
+
if aligned_imgs and len(aligned_imgs) > 0:
|
| 343 |
+
img = aligned_imgs[0]
|
| 344 |
+
if img.size != (1024, 1024):
|
| 345 |
+
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
| 346 |
+
align_cache[img_hash] = img
|
| 347 |
+
else:
|
| 348 |
+
img = center_crop(img)
|
| 349 |
+
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
| 350 |
+
align_cache[img_hash] = img
|
| 351 |
+
except Exception as e:
|
| 352 |
+
print(f"Face alignment failed for {name}, using center crop: {e}")
|
| 353 |
+
img = center_crop(img)
|
| 354 |
+
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
| 355 |
+
align_cache[img_hash] = img
|
| 356 |
+
else:
|
| 357 |
+
img = align_cache[img_hash]
|
| 358 |
+
else:
|
| 359 |
+
if img.size != (1024, 1024):
|
| 360 |
+
img = center_crop(img)
|
| 361 |
+
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
| 362 |
+
return img
|
| 363 |
+
return resize_inner
|
| 364 |
+
|
| 365 |
+
def swap_hair_selective(face, shape, color, blending, poisson_iters, poisson_erosion):
|
| 366 |
+
"""
|
| 367 |
+
Enhanced swap logic with selective transfer:
|
| 368 |
+
- If only shape provided: change hairstyle only
|
| 369 |
+
- If only color provided: change hair color only
|
| 370 |
+
- If both provided: change both hairstyle and color
|
| 371 |
+
"""
|
| 372 |
+
global hair_fast_model
|
| 373 |
+
|
| 374 |
+
if hair_fast_model is None:
|
| 375 |
+
if not initialize_hairfast_original():
|
| 376 |
+
return None, "HairFast model not available. Please check if all model files are uploaded."
|
| 377 |
+
|
| 378 |
+
if not face and not shape and not color:
|
| 379 |
+
return None, "Need to upload a face and at least a shape or color ❗"
|
| 380 |
+
elif not face:
|
| 381 |
+
return None, "Need to upload a face ❗"
|
| 382 |
+
elif not shape and not color:
|
| 383 |
+
return None, "Need to upload at least a shape or color ❗"
|
| 384 |
+
|
| 385 |
+
try:
|
| 386 |
+
print("Starting selective hair transfer...")
|
| 387 |
+
|
| 388 |
+
torch.cuda.empty_cache()
|
| 389 |
+
gc.collect()
|
| 390 |
+
|
| 391 |
+
def validate_size(img, name):
|
| 392 |
+
if img is not None:
|
| 393 |
+
if img.size != (1024, 1024):
|
| 394 |
+
print(f"Resizing {name} from {img.size} to (1024, 1024)")
|
| 395 |
+
img = center_crop(img)
|
| 396 |
+
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
| 397 |
+
return img
|
| 398 |
+
|
| 399 |
+
face = validate_size(face, "face")
|
| 400 |
+
shape = validate_size(shape, "shape") if shape else None
|
| 401 |
+
color = validate_size(color, "color") if color else None
|
| 402 |
+
|
| 403 |
+
# Determine transfer mode
|
| 404 |
+
has_shape = shape is not None
|
| 405 |
+
has_color = color is not None
|
| 406 |
+
|
| 407 |
+
if has_shape and has_color:
|
| 408 |
+
transfer_mode = "both"
|
| 409 |
+
print("Transfer mode: Both hairstyle and color")
|
| 410 |
+
elif has_shape and not has_color:
|
| 411 |
+
transfer_mode = "shape_only"
|
| 412 |
+
color = face # Use original face for color reference
|
| 413 |
+
print("Transfer mode: Hairstyle only (preserving original color)")
|
| 414 |
+
elif has_color and not has_shape:
|
| 415 |
+
transfer_mode = "color_only"
|
| 416 |
+
shape = face # Use original face for shape reference
|
| 417 |
+
print("Transfer mode: Color only (preserving original hairstyle)")
|
| 418 |
+
|
| 419 |
+
print(f"Final sizes - Face: {face.size}, Shape: {shape.size if shape else 'None'}, Color: {color.size if color else 'None'}")
|
| 420 |
+
|
| 421 |
+
with torch.no_grad():
|
| 422 |
+
start_time = time.time()
|
| 423 |
+
|
| 424 |
+
# Use the HairFast model's swap method with proper parameters
|
| 425 |
+
final_image = hair_fast_model.swap(face, shape, color)
|
| 426 |
+
|
| 427 |
+
inference_time = time.time() - start_time
|
| 428 |
+
print(f"Inference completed in {inference_time:.2f} seconds")
|
| 429 |
+
|
| 430 |
+
result_image = F.to_pil_image(final_image)
|
| 431 |
+
|
| 432 |
+
torch.cuda.empty_cache()
|
| 433 |
+
gc.collect()
|
| 434 |
+
|
| 435 |
+
success_message = f"Hair transfer ({transfer_mode}) completed successfully in {inference_time:.2f}s"
|
| 436 |
+
print(success_message)
|
| 437 |
+
|
| 438 |
+
return result_image, success_message
|
| 439 |
+
|
| 440 |
+
except Exception as e:
|
| 441 |
+
torch.cuda.empty_cache()
|
| 442 |
+
gc.collect()
|
| 443 |
+
error_msg = f"Hair transfer failed: {str(e)}"
|
| 444 |
+
print(f"Detailed error: {e}")
|
| 445 |
+
return None, error_msg
|
| 446 |
+
|
| 447 |
+
def hair_transfer_api(source_image, shape_image=None, color_image=None,
|
| 448 |
+
blending="Article", poisson_iters=0, poisson_erosion=15):
|
| 449 |
+
"""Enhanced API function for frontend integration with quality preservation"""
|
| 450 |
+
try:
|
| 451 |
+
print("API call received - processing images...")
|
| 452 |
+
|
| 453 |
+
if isinstance(source_image, str):
|
| 454 |
+
source_image = base64_to_image(source_image)
|
| 455 |
+
print(f"Source image loaded: {source_image.size if source_image else 'Failed'}")
|
| 456 |
+
|
| 457 |
+
if isinstance(shape_image, str) and shape_image:
|
| 458 |
+
shape_image = base64_to_image(shape_image)
|
| 459 |
+
print(f"Shape image loaded: {shape_image.size if shape_image else 'Failed'}")
|
| 460 |
+
|
| 461 |
+
if isinstance(color_image, str) and color_image:
|
| 462 |
+
color_image = base64_to_image(color_image)
|
| 463 |
+
print(f"Color image loaded: {color_image.size if color_image else 'Failed'}")
|
| 464 |
+
|
| 465 |
+
if not source_image:
|
| 466 |
+
return None, "Failed to process source image"
|
| 467 |
+
|
| 468 |
+
result_image, status_message = swap_hair_selective(
|
| 469 |
+
source_image, shape_image, color_image,
|
| 470 |
+
blending, poisson_iters, poisson_erosion
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
if result_image is not None:
|
| 474 |
+
print(f"Result image generated: {result_image.size}")
|
| 475 |
+
result_base64 = image_to_base64(result_image)
|
| 476 |
+
print("Result converted to base64 successfully")
|
| 477 |
+
return result_base64, status_message
|
| 478 |
+
else:
|
| 479 |
+
print("Result image is None")
|
| 480 |
+
return None, status_message
|
| 481 |
+
|
| 482 |
+
except Exception as e:
|
| 483 |
+
error_msg = f"API Error: {str(e)}"
|
| 484 |
+
print(f"API Error details: {e}")
|
| 485 |
+
return None, error_msg
|
| 486 |
+
|
| 487 |
+
def get_demo():
|
| 488 |
+
"""Enhanced Gradio interface with selective transfer options"""
|
| 489 |
+
with gr.Blocks(
|
| 490 |
+
title="HairFastGAN - Selective Transfer",
|
| 491 |
+
theme=gr.themes.Soft(),
|
| 492 |
+
css="""
|
| 493 |
+
.error-message {
|
| 494 |
+
color: red !important;
|
| 495 |
+
background-color: #ffebee !important;
|
| 496 |
+
padding: 10px !important;
|
| 497 |
+
border-radius: 5px !important;
|
| 498 |
+
}
|
| 499 |
+
.transfer-info {
|
| 500 |
+
background-color: #e3f2fd !important;
|
| 501 |
+
padding: 10px !important;
|
| 502 |
+
border-radius: 5px !important;
|
| 503 |
+
margin: 10px 0 !important;
|
| 504 |
+
}
|
| 505 |
+
"""
|
| 506 |
+
) as demo:
|
| 507 |
+
|
| 508 |
+
gr.Markdown("## HairFastGan - Selective Transfer")
|
| 509 |
+
gr.Markdown(
|
| 510 |
+
'<div style="display: flex; align-items: center; gap: 10px;">'
|
| 511 |
+
'<span>Enhanced HairFastGAN with selective transfer:</span>'
|
| 512 |
+
'<a href="https://arxiv.org/abs/2404.01094"><img src="https://img.shields.io/badge/arXiv-2404.01094-b31b1b.svg" height=22.5></a>'
|
| 513 |
+
'<a href="https://github.com/AIRI-Institute/HairFastGAN"><img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" height=22.5></a>'
|
| 514 |
+
'<a href="https://huggingface.co/AIRI-Institute/HairFastGAN"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md.svg" height=22.5></a>'
|
| 515 |
+
'<a href="https://colab.research.google.com/#fileId=https://huggingface.co/AIRI-Institute/HairFastGAN/blob/main/notebooks/HairFast_inference.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=22.5></a>'
|
| 516 |
+
'</div>'
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
gr.Markdown(
|
| 520 |
+
"""
|
| 521 |
+
<div class="transfer-info">
|
| 522 |
+
<b>🎯 Selective Transfer Modes:</b><br>
|
| 523 |
+
• <b>Shape Only:</b> Upload only shape image → Changes hairstyle while preserving original color<br>
|
| 524 |
+
• <b>Color Only:</b> Upload only color image → Changes hair color while preserving original hairstyle<br>
|
| 525 |
+
• <b>Both:</b> Upload both images → Changes both hairstyle and color
|
| 526 |
+
</div>
|
| 527 |
+
""",
|
| 528 |
+
elem_classes="transfer-info"
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
with gr.Row():
|
| 532 |
+
with gr.Column():
|
| 533 |
+
source = gr.Image(label="Source photo to try on the hairstyle", type="pil")
|
| 534 |
+
|
| 535 |
+
with gr.Row():
|
| 536 |
+
shape = gr.Image(label="Shape photo with desired hairstyle (optional)", type="pil")
|
| 537 |
+
color = gr.Image(label="Color photo with desired hair color (optional)", type="pil")
|
| 538 |
+
|
| 539 |
+
# Transfer mode indicator
|
| 540 |
+
transfer_status = gr.Textbox(label="Transfer Mode", interactive=False,
|
| 541 |
+
value="Upload images to see transfer mode")
|
| 542 |
+
|
| 543 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 544 |
+
blending = gr.Radio(["Article", "Alternative_v1", "Alternative_v2"], value='Article',
|
| 545 |
+
label="Color Encoder version")
|
| 546 |
+
poisson_iters = gr.Slider(0, 2500, value=0, step=1, label="Poisson iters")
|
| 547 |
+
poisson_erosion = gr.Slider(1, 100, value=15, step=1, label="Poisson erosion")
|
| 548 |
+
align = gr.CheckboxGroup(["Face", "Shape", "Color"], value=["Face", "Shape", "Color"],
|
| 549 |
+
label="Image cropping [recommended]")
|
| 550 |
+
|
| 551 |
+
btn = gr.Button("Get the haircut", variant="primary")
|
| 552 |
+
|
| 553 |
+
with gr.Column():
|
| 554 |
+
output = gr.Image(label="Your result")
|
| 555 |
+
error_message = gr.Textbox(label="⚠️ Error ⚠️", visible=False, elem_classes="error-message")
|
| 556 |
+
|
| 557 |
+
# Function to update transfer mode display
|
| 558 |
+
def update_transfer_mode(shape_img, color_img):
|
| 559 |
+
if shape_img is not None and color_img is not None:
|
| 560 |
+
return "🎯 Both hairstyle and color will be transferred"
|
| 561 |
+
elif shape_img is not None and color_img is None:
|
| 562 |
+
return "🎨 Only hairstyle will be transferred (color preserved)"
|
| 563 |
+
elif shape_img is None and color_img is not None:
|
| 564 |
+
return "🌈 Only hair color will be transferred (style preserved)"
|
| 565 |
+
else:
|
| 566 |
+
return "Upload shape and/or color reference images"
|
| 567 |
+
|
| 568 |
+
# Update transfer mode when images change
|
| 569 |
+
shape.change(fn=update_transfer_mode, inputs=[shape, color], outputs=transfer_status)
|
| 570 |
+
color.change(fn=update_transfer_mode, inputs=[shape, color], outputs=transfer_status)
|
| 571 |
+
|
| 572 |
+
source.upload(fn=resize('Face'), inputs=[source, align], outputs=source)
|
| 573 |
+
shape.upload(fn=resize('Shape'), inputs=[shape, align], outputs=shape)
|
| 574 |
+
color.upload(fn=resize('Color'), inputs=[color, align], outputs=color)
|
| 575 |
+
|
| 576 |
+
btn.click(
|
| 577 |
+
fn=swap_hair_selective,
|
| 578 |
+
inputs=[source, shape, color, blending, poisson_iters, poisson_erosion],
|
| 579 |
+
outputs=[output, error_message],
|
| 580 |
+
api_name="predict"
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
gr.Markdown('''
|
| 584 |
+
### How to use:
|
| 585 |
+
1. **Upload your source photo** (the face you want to modify)
|
| 586 |
+
2. **Choose your transfer mode:**
|
| 587 |
+
- For **hairstyle only**: Upload only a shape reference image
|
| 588 |
+
- For **color only**: Upload only a color reference image
|
| 589 |
+
- For **both**: Upload both shape and color reference images
|
| 590 |
+
3. **Click "Get the haircut"** and wait for results!
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
''')
|
| 594 |
+
|
| 595 |
+
return demo
|
| 596 |
+
|
| 597 |
+
def create_api_app():
|
| 598 |
+
"""Create FastAPI app for better frontend integration"""
|
| 599 |
+
app = FastAPI(title="HairFastGAN Selective Transfer API", version="2.0")
|
| 600 |
+
|
| 601 |
+
app.add_middleware(
|
| 602 |
+
CORSMiddleware,
|
| 603 |
+
allow_origins=["*"],
|
| 604 |
+
allow_credentials=True,
|
| 605 |
+
allow_methods=["*"],
|
| 606 |
+
allow_headers=["*"],
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
@app.post("/api/hair-transfer", response_model=ImageResponse)
|
| 610 |
+
async def transfer_hair(request: ImageRequest):
|
| 611 |
+
"""Enhanced API endpoint for hair transfer"""
|
| 612 |
+
try:
|
| 613 |
+
print(f"API request received: {len(request.source_image)} chars source")
|
| 614 |
+
|
| 615 |
+
result_base64, message = hair_transfer_api(
|
| 616 |
+
source_image=request.source_image,
|
| 617 |
+
shape_image=request.shape_image,
|
| 618 |
+
color_image=request.color_image,
|
| 619 |
+
blending=request.blending,
|
| 620 |
+
poisson_iters=request.poisson_iters,
|
| 621 |
+
poisson_erosion=request.poisson_erosion
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
if result_base64:
|
| 625 |
+
return ImageResponse(
|
| 626 |
+
success=True,
|
| 627 |
+
result_image=result_base64,
|
| 628 |
+
message=message or "Hair transfer completed successfully"
|
| 629 |
+
)
|
| 630 |
+
else:
|
| 631 |
+
return ImageResponse(
|
| 632 |
+
success=False,
|
| 633 |
+
message=message or "Hair transfer failed"
|
| 634 |
+
)
|
| 635 |
+
|
| 636 |
+
except Exception as e:
|
| 637 |
+
print(f"API endpoint error: {e}")
|
| 638 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 639 |
+
|
| 640 |
+
@app.get("/api/health")
|
| 641 |
+
async def health_check():
|
| 642 |
+
"""Health check endpoint"""
|
| 643 |
+
return {"status": "healthy", "model_loaded": hair_fast_model is not None}
|
| 644 |
+
|
| 645 |
+
return app
|
| 646 |
+
|
| 647 |
+
if __name__ == '__main__':
|
| 648 |
+
optimize_for_t4()
|
| 649 |
+
|
| 650 |
+
align_cache = LRUCache(maxsize=10)
|
| 651 |
+
|
| 652 |
+
if not initialize_hairfast_original():
|
| 653 |
+
print("Failed to initialize HairFast model")
|
| 654 |
+
exit(1)
|
| 655 |
+
|
| 656 |
+
gradio_demo = get_demo()
|
| 657 |
+
fastapi_app = create_api_app()
|
| 658 |
+
|
| 659 |
+
def run_fastapi():
|
| 660 |
+
uvicorn.run(fastapi_app, host="0.0.0.0", port=8000, log_level="info")
|
| 661 |
+
|
| 662 |
+
def run_gradio():
|
| 663 |
+
gradio_demo.queue(max_size=10, default_concurrency_limit=2)
|
| 664 |
+
gradio_demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
| 665 |
+
|
| 666 |
+
print("Starting FastAPI server on port 8000...")
|
| 667 |
+
fastapi_thread = threading.Thread(target=run_fastapi)
|
| 668 |
+
fastapi_thread.daemon = True
|
| 669 |
+
fastapi_thread.start()
|
| 670 |
+
|
| 671 |
+
print("Starting Gradio server on port 7860...")
|
| 672 |
+
run_gradio()
|
requirements.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pillow==10.0.0
|
| 2 |
+
face_alignment==1.3.4
|
| 3 |
+
addict==2.4.0
|
| 4 |
+
git+https://github.com/openai/CLIP.git
|
| 5 |
+
gdown==4.7.1
|
| 6 |
+
grpcio==1.63.0
|
| 7 |
+
grpcio_tools==1.63.0
|
| 8 |
+
gradio==4.31.5
|
| 9 |
+
cachetools==5.3.3
|
| 10 |
+
dlib-binary==19.24.1
|
| 11 |
+
opencv-python==4.11.0.86
|
| 12 |
+
torch>=2.0.0
|
| 13 |
+
torchvision>=0.15.0
|
| 14 |
+
numpy>=1.21.0
|
| 15 |
+
scipy>=1.7.0
|
| 16 |
+
scikit-image>=0.18.0
|
| 17 |
+
scikit-learn>=1.0.0
|
| 18 |
+
numba>=0.56.0
|
| 19 |
+
ninja
|
| 20 |
+
cmake
|