Spaces:
Paused
Paused
| import os | |
| from pathlib import Path | |
| import PIL | |
| import dlib | |
| import numpy as np | |
| import scipy | |
| import scipy.ndimage | |
| import torch | |
| from PIL import Image | |
| from torchvision import transforms as T | |
| from utils.drive import open_url | |
| """ | |
| brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) | |
| author: lzhbrian (https://lzhbrian.me) | |
| date: 2020.1.5 | |
| note: code is heavily borrowed from | |
| https://github.com/NVlabs/ffhq-dataset | |
| http://dlib.net/face_landmark_detection.py.html | |
| requirements: | |
| apt install cmake | |
| conda install Pillow numpy scipy | |
| pip install dlib | |
| # download face landmark model from: | |
| # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
| """ | |
| def get_landmark(filepath, predictor): | |
| """get landmark with dlib | |
| :return: np.array shape=(68, 2) | |
| """ | |
| detector = dlib.get_frontal_face_detector() | |
| img = dlib.load_rgb_image(filepath) | |
| dets = detector(img, 1) | |
| filepath = Path(filepath) | |
| print(f"{filepath.name}: Number of faces detected: {len(dets)}") | |
| shapes = [predictor(img, d) for k, d in enumerate(dets)] | |
| lms = [np.array([[tt.x, tt.y] for tt in shape.parts()]) for shape in shapes] | |
| return lms | |
| def get_landmark_from_tensors(tensors: list[torch.Tensor | Image.Image | np.ndarray], predictor): | |
| detector = dlib.get_frontal_face_detector() | |
| transform = T.ToPILImage() | |
| images = [] | |
| lms = [] | |
| for k, tensor in enumerate(tensors): | |
| if isinstance(tensor, torch.Tensor): | |
| img_pil = transform(tensor) | |
| else: | |
| img_pil = tensor | |
| img = np.array(img_pil) | |
| images.append(img_pil) | |
| dets = detector(img, 1) | |
| if len(dets) == 0: | |
| raise ValueError(f"No faces detected in the image {k}.") | |
| elif len(dets) == 1: | |
| print(f"Number of faces detected: {len(dets)}") | |
| else: | |
| print(f"Number of faces detected: {len(dets)}, get largest face") | |
| # Find the largest face | |
| dets = sorted(dets, key=lambda det: det.width() * det.height(), reverse=True) | |
| shape = predictor(img, dets[0]) | |
| lm = np.array([[tt.x, tt.y] for tt in shape.parts()]) | |
| lms.append(lm) | |
| return images, lms | |
| def align_face(data, predictor=None, is_filepath=False, return_tensors=True): | |
| """ | |
| :param data: filepath or list torch Tensors | |
| :return: list of PIL Images | |
| """ | |
| if predictor is None: | |
| predictor_path = 'shape_predictor_68_face_landmarks.dat' | |
| if not os.path.isfile(predictor_path): | |
| print("Downloading Shape Predictor") | |
| data_io = open_url("https://drive.google.com/uc?id=1huhv8PYpNNKbGCLOaYUjOgR1pY5pmbJx") | |
| with open(predictor_path, 'wb') as f: | |
| f.write(data_io.getbuffer()) | |
| predictor = dlib.shape_predictor(predictor_path) | |
| if is_filepath: | |
| lms = get_landmark(data, predictor) | |
| else: | |
| if not isinstance(data, list): | |
| data = [data] | |
| images, lms = get_landmark_from_tensors(data, predictor) | |
| imgs = [] | |
| for num_img, lm in enumerate(lms): | |
| lm_chin = lm[0: 17] # left-right | |
| lm_eyebrow_left = lm[17: 22] # left-right | |
| lm_eyebrow_right = lm[22: 27] # left-right | |
| lm_nose = lm[27: 31] # top-down | |
| lm_nostrils = lm[31: 36] # top-down | |
| lm_eye_left = lm[36: 42] # left-clockwise | |
| lm_eye_right = lm[42: 48] # left-clockwise | |
| lm_mouth_outer = lm[48: 60] # left-clockwise | |
| lm_mouth_inner = lm[60: 68] # left-clockwise | |
| # Calculate auxiliary vectors. | |
| eye_left = np.mean(lm_eye_left, axis=0) | |
| eye_right = np.mean(lm_eye_right, axis=0) | |
| eye_avg = (eye_left + eye_right) * 0.5 | |
| eye_to_eye = eye_right - eye_left | |
| mouth_left = lm_mouth_outer[0] | |
| mouth_right = lm_mouth_outer[6] | |
| mouth_avg = (mouth_left + mouth_right) * 0.5 | |
| eye_to_mouth = mouth_avg - eye_avg | |
| # Choose oriented crop rectangle. | |
| x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
| x /= np.hypot(*x) | |
| x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | |
| y = np.flipud(x) * [-1, 1] | |
| c = eye_avg + eye_to_mouth * 0.1 | |
| quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
| qsize = np.hypot(*x) * 2 | |
| # read image | |
| if is_filepath: | |
| img = PIL.Image.open(data) | |
| else: | |
| img = images[num_img] | |
| output_size = 1024 | |
| # output_size = 256 | |
| transform_size = 4096 | |
| enable_padding = True | |
| # Shrink. | |
| shrink = int(np.floor(qsize / output_size * 0.5)) | |
| if shrink > 1: | |
| rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | |
| img = img.resize(rsize, PIL.Image.ANTIALIAS) | |
| quad /= shrink | |
| qsize /= shrink | |
| # Crop. | |
| border = max(int(np.rint(qsize * 0.1)), 3) | |
| crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
| int(np.ceil(max(quad[:, 1])))) | |
| crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), | |
| min(crop[3] + border, img.size[1])) | |
| if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | |
| img = img.crop(crop) | |
| quad -= crop[0:2] | |
| # Pad. | |
| pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
| int(np.ceil(max(quad[:, 1])))) | |
| pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), | |
| max(pad[3] - img.size[1] + border, 0)) | |
| if enable_padding and max(pad) > border - 4: | |
| pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
| img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
| h, w, _ = img.shape | |
| y, x, _ = np.ogrid[:h, :w, :1] | |
| mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), | |
| 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) | |
| blur = qsize * 0.02 | |
| img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
| img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) | |
| img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | |
| quad += pad[:2] | |
| # Transform. | |
| img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), | |
| PIL.Image.BILINEAR) | |
| if output_size < transform_size: | |
| img = img.resize((output_size, output_size), PIL.Image.LANCZOS) | |
| # Save aligned image. | |
| imgs.append(img) | |
| if return_tensors: | |
| transform = T.ToTensor() | |
| tensors = [transform(img).clamp(0, 1) for img in imgs] | |
| return tensors | |
| return imgs | |