File size: 19,543 Bytes
3de0e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import sys
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data

from PIL import Image
from torch.autograd import grad
from torchvision import transforms, utils

import face_alignment
import lpips

current_dir = os.path.abspath(os.path.dirname(__file__))
sys.path.insert(0, current_dir)
from pixel2style2pixel.models.stylegan2.model import Generator, get_keys

from nets.feature_style_encoder import *
from arcface.iresnet import *
from face_parsing.model import BiSeNet
from ranger import Ranger

import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data

from PIL import Image
from torch.autograd import grad

        
def clip_img(x):
    """Clip stylegan generated image to range(0,1)"""
    img_tmp = x.clone()[0]
    img_tmp = (img_tmp + 1) / 2
    img_tmp = torch.clamp(img_tmp, 0, 1)
    return [img_tmp.detach().cpu()]

def tensor_byte(x):
    return x.element_size()*x.nelement()

def count_parameters(net):
    s = sum([np.prod(list(mm.size())) for mm in net.parameters()])
    print(s)

def stylegan_to_classifier(x, out_size=(224, 224)):
    """Clip image to range(0,1)"""
    img_tmp = x.clone()
    img_tmp = torch.clamp((0.5*img_tmp + 0.5), 0, 1)
    img_tmp = F.interpolate(img_tmp, size=out_size, mode='bilinear')
    img_tmp[:,0] = (img_tmp[:,0] - 0.485)/0.229
    img_tmp[:,1] = (img_tmp[:,1] - 0.456)/0.224
    img_tmp[:,2] = (img_tmp[:,2] - 0.406)/0.225
    #img_tmp = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img_tmp)
    return img_tmp
    
def downscale(x, scale_times=1, mode='bilinear'):
    for i in range(scale_times):
        x = F.interpolate(x, scale_factor=0.5, mode=mode)
    return x
    
def upscale(x, scale_times=1, mode='bilinear'):
    for i in range(scale_times):
        x = F.interpolate(x, scale_factor=2, mode=mode)
    return x
    
def hist_transform(source_tensor, target_tensor):
    """Histogram transformation"""
    c, h, w = source_tensor.size()
    s_t = source_tensor.view(c, -1)
    t_t = target_tensor.view(c, -1)
    s_t_sorted, s_t_indices = torch.sort(s_t)
    t_t_sorted, t_t_indices = torch.sort(t_t)
    for i in range(c):
        s_t[i, s_t_indices[i]] = t_t_sorted[i]
    return s_t.view(c, h, w)

def init_weights(m):
    """Initialize layers with Xavier uniform distribution"""
    if type(m) == nn.Conv2d:
        nn.init.xavier_uniform_(m.weight)
    elif type(m) == nn.Linear:
        nn.init.uniform_(m.weight, 0.0, 1.0)
        if m.bias is not None:
            nn.init.constant_(m.bias, 0.01)

def total_variation(x, delta=1):
    """Total variation, x: tensor of size (B, C, H, W)"""
    out = torch.mean(torch.abs(x[:, :, :, :-delta] - x[:, :, :, delta:]))\
        + torch.mean(torch.abs(x[:, :, :-delta, :] - x[:, :, delta:, :]))
    return out

def vgg_transform(x):
    """Adapt image for vgg network, x: image of range(0,1) subtracting ImageNet mean"""
    r, g, b = torch.split(x, 1, 1)
    out = torch.cat((b, g, r), dim = 1)
    out = F.interpolate(out, size=(224, 224), mode='bilinear')
    out = out*255.
    return out

# warp image with flow
def normalize_axis(x,L):
    return (x-1-(L-1)/2)*2/(L-1)

def unnormalize_axis(x,L):
    return x*(L-1)/2+1+(L-1)/2

def torch_flow_to_th_sampling_grid(flow,h_src,w_src,use_cuda=False):
    b,c,h_tgt,w_tgt=flow.size()
    grid_y, grid_x = torch.meshgrid(torch.tensor(range(1,w_tgt+1)),torch.tensor(range(1,h_tgt+1)))
    disp_x=flow[:,0,:,:]
    disp_y=flow[:,1,:,:]
    source_x=grid_x.unsqueeze(0).repeat(b,1,1).type_as(flow)+disp_x
    source_y=grid_y.unsqueeze(0).repeat(b,1,1).type_as(flow)+disp_y
    source_x_norm=normalize_axis(source_x,w_src) 
    source_y_norm=normalize_axis(source_y,h_src) 
    sampling_grid=torch.cat((source_x_norm.unsqueeze(3), source_y_norm.unsqueeze(3)), dim=3)
    if use_cuda:
        sampling_grid = sampling_grid.cuda()
    return sampling_grid

def warp_image_torch(image, flow):
    """
    Warp image (tensor, shape=[b, 3, h_src, w_src]) with flow (tensor, shape=[b, h_tgt, w_tgt, 2])
    """
    b,c,h_src,w_src=image.size()
    sampling_grid_torch = torch_flow_to_th_sampling_grid(flow, h_src, w_src)  
    warped_image_torch = F.grid_sample(image, sampling_grid_torch)
    return warped_image_torch

class Trainer(nn.Module):
    def __init__(self, config, opts):
        super(Trainer, self).__init__()
        # Load Hyperparameters
        self.config = config
        self.device = torch.device(self.config['device'])
        self.scale = int(np.log2(config['resolution']/config['enc_resolution']))
        self.scale_mode = 'bilinear'
        self.opts = opts
        self.n_styles = 2 * int(np.log2(config['resolution'])) - 2
        self.idx_k = 5
        if 'idx_k' in self.config:
            self.idx_k = self.config['idx_k']
        if 'stylegan_version' in self.config and self.config['stylegan_version'] == 3:
            self.n_styles = 16
        # Networks
        in_channels = 256
        if 'in_c' in self.config:
            in_channels = config['in_c']
        enc_residual = False
        if 'enc_residual' in self.config:
            enc_residual = self.config['enc_residual']
        enc_residual_coeff = False
        if 'enc_residual_coeff' in self.config:
            enc_residual_coeff = self.config['enc_residual_coeff']
        resnet_layers = [4,5,6]
        if 'enc_start_layer' in self.config:
            st_l = self.config['enc_start_layer']
            resnet_layers = [st_l, st_l+1, st_l+2]
        if 'scale_mode' in self.config:
            self.scale_mode = self.config['scale_mode']
        # Load encoder
        self.stride = (self.config['fs_stride'], self.config['fs_stride'])
        self.enc = fs_encoder_v2(n_styles=self.n_styles, opts=opts, residual=enc_residual, use_coeff=enc_residual_coeff, resnet_layer=resnet_layers, stride=self.stride)
        
        ##########################
        # Other nets
        self.StyleGAN = self.init_stylegan(config)
        self.Arcface = iresnet50()
        self.parsing_net = BiSeNet(n_classes=19)
        # Optimizers
        # Latent encoder
        self.enc_params = list(self.enc.parameters()) 
        if 'freeze_iresnet' in self.config and self.config['freeze_iresnet']:
            self.enc_params =  list(self.enc.styles.parameters())
        if 'optimizer' in self.config and self.config['optimizer'] == 'ranger':
            self.enc_opt = Ranger(self.enc_params, lr=config['lr'], betas=(config['beta_1'], config['beta_2']), weight_decay=config['weight_decay'])
        else:
            self.enc_opt = torch.optim.Adam(self.enc_params, lr=config['lr'], betas=(config['beta_1'], config['beta_2']), weight_decay=config['weight_decay'])
        self.enc_scheduler = torch.optim.lr_scheduler.StepLR(self.enc_opt, step_size=config['step_size'], gamma=config['gamma'])

        self.fea_avg = None

    def initialize(self, stylegan_model_path, arcface_model_path, parsing_model_path):
        # load StyleGAN model
        stylegan_state_dict = torch.load(stylegan_model_path, map_location='cpu')
        self.StyleGAN.load_state_dict(get_keys(stylegan_state_dict, 'decoder'), strict=True)
        self.StyleGAN.to(self.device)
        # get StyleGAN average latent in w space and the noise inputs
        self.dlatent_avg = stylegan_state_dict['latent_avg'].to(self.device)
        self.noise_inputs = [getattr(self.StyleGAN.noises, f'noise_{i}').to(self.device) for i in range(self.StyleGAN.num_layers)]
        # load Arcface weight
        self.Arcface.load_state_dict(torch.load(self.opts.arcface_model_path))
        self.Arcface.eval()
        # load face parsing net weight
        self.parsing_net.load_state_dict(torch.load(self.opts.parsing_model_path))
        self.parsing_net.eval()
        # load lpips net weight
        # self.loss_fn = lpips.LPIPS(net='alex', spatial=False)
        # self.loss_fn.to(self.device)
    
    def init_stylegan(self, config):
        """StyleGAN = G_main(
            truncation_psi=config['truncation_psi'], 
            resolution=config['resolution'], 
            use_noise=config['use_noise'],  
            randomize_noise=config['randomize_noise']
        )"""
        StyleGAN = Generator(1024, 512, 8)
        return StyleGAN
    
    def mapping(self, z):
        return self.StyleGAN.get_latent(z).detach()

    def L1loss(self, input, target):
        return nn.L1Loss()(input,target)
    
    def L2loss(self, input, target):
        return nn.MSELoss()(input,target)

    def CEloss(self, x, target_age):
        return nn.CrossEntropyLoss()(x, target_age)
    
    def LPIPS(self, input, target, multi_scale=False):
        if multi_scale:
            out = 0
            for k in range(3):
                out += self.loss_fn.forward(downscale(input, k, self.scale_mode), downscale(target, k, self.scale_mode)).mean()
        else:
            out = self.loss_fn.forward(downscale(input, self.scale, self.scale_mode), downscale(target, self.scale, self.scale_mode)).mean()
        return out
    
    def IDloss(self, input, target):
        x_1 = F.interpolate(input, (112,112))
        x_2 = F.interpolate(target, (112,112))
        cos = nn.CosineSimilarity(dim=1, eps=1e-6)
        if 'multi_layer_idloss' in self.config and self.config['multi_layer_idloss']:
            id_1 = self.Arcface(x_1, return_features=True)
            id_2 = self.Arcface(x_2, return_features=True)
            return sum([1 - cos(id_1[i].flatten(start_dim=1), id_2[i].flatten(start_dim=1)) for i in range(len(id_1))])
        else:
            id_1 = self.Arcface(x_1)
            id_2 = self.Arcface(x_2)
            return 1 - cos(id_1, id_2)
    
    def landmarkloss(self, input, target):
        cos = nn.CosineSimilarity(dim=1, eps=1e-6)
        x_1 = stylegan_to_classifier(input, out_size=(512, 512))
        x_2 = stylegan_to_classifier(target, out_size=(512,512))
        out_1 = self.parsing_net(x_1)
        out_2 = self.parsing_net(x_2)
        parsing_loss = sum([1 - cos(out_1[i].flatten(start_dim=1), out_2[i].flatten(start_dim=1)) for i in range(len(out_1))])
        return parsing_loss.mean()
        

    def feature_match(self, enc_feat, dec_feat, layer_idx=None):
        loss = []
        if layer_idx is None:
            layer_idx = [i for i in range(len(enc_feat))]
        for i in layer_idx:
            loss.append(self.L1loss(enc_feat[i], dec_feat[i]))
        return loss
    
    def encode(self, img):
        w_recon, fea = self.enc(downscale(img, self.scale, self.scale_mode)) 
        w_recon = w_recon + self.dlatent_avg
        return w_recon, fea

    def get_image(self, w=None, img=None, noise=None, zero_noise_input=True, training_mode=True):
        
        x_1, n_1 = img, noise
        if x_1 is None:
            x_1, _ = self.StyleGAN([w], input_is_latent=True, noise = n_1)
           
        w_delta = None
        fea = None
        features = None
        return_features = False
        # Reconstruction
        k = 0
        if 'use_fs_encoder' in self.config and self.config['use_fs_encoder']:
            return_features = True
            k = self.idx_k
            w_recon, fea = self.enc(downscale(x_1, self.scale, self.scale_mode)) 
            w_recon = w_recon + self.dlatent_avg
            features = [None]*k + [fea] + [None]*(17-k)
        else:
            w_recon = self.enc(downscale(x_1, self.scale, self.scale_mode)) + self.dlatent_avg        

        # generate image
        x_1_recon, fea_recon = self.StyleGAN([w_recon], input_is_latent=True, return_features=True, features_in=features, feature_scale=min(1.0, 0.0001*self.n_iter))
        fea_recon = fea_recon[k].detach() 
        return [x_1_recon, x_1[:,:3,:,:], w_recon, w_delta, n_1, fea, fea_recon]

    def compute_loss(self, w=None, img=None, noise=None, real_img=None):
        return self.compute_loss_stylegan2(w=w, img=img, noise=noise, real_img=real_img)

    def compute_loss_stylegan2(self, w=None, img=None, noise=None, real_img=None):
        
        if img is None:
            # generate synthetic images
            if noise is None:
                noise = [torch.randn(w.size()[:1] + ee.size()[1:]).to(self.device) for ee in self.noise_inputs]
            img, _ = self.StyleGAN([w], input_is_latent=True, noise = noise)
            img = img.detach()

        if img is not None and real_img is not None:
            # concat synthetic and real data
            img = torch.cat([img, real_img], dim=0)
            noise = [torch.cat([ee, ee], dim=0) for ee in noise]
        
        out = self.get_image(w=w, img=img, noise=noise)
        x_1_recon, x_1, w_recon, w_delta, n_1, fea_1, fea_recon = out

        # Loss setting
        w_l2, w_lpips, w_id = self.config['w']['l2'], self.config['w']['lpips'], self.config['w']['id']
        b = x_1.size(0)//2
        if 'l2loss_on_real_image' in self.config and self.config['l2loss_on_real_image']:
            b = x_1.size(0)
        self.l2_loss = self.L2loss(x_1_recon[:b], x_1[:b]) if w_l2 > 0 else torch.tensor(0) # l2 loss only on synthetic data
        # LPIPS
        multiscale_lpips=False if 'multiscale_lpips' not in self.config else self.config['multiscale_lpips']
        self.lpips_loss = self.LPIPS(x_1_recon, x_1, multi_scale=multiscale_lpips).mean() if w_lpips > 0 else torch.tensor(0)
        self.id_loss = self.IDloss(x_1_recon, x_1).mean() if w_id > 0 else torch.tensor(0)
        self.landmark_loss = self.landmarkloss(x_1_recon, x_1) if self.config['w']['landmark'] > 0 else torch.tensor(0)
        
        if 'use_fs_encoder' in self.config and self.config['use_fs_encoder']:
            k = self.idx_k 
            features = [None]*k + [fea_1] + [None]*(17-k)
            x_1_recon_2, _ = self.StyleGAN([w_recon], noise=n_1, input_is_latent=True, features_in=features, feature_scale=min(1.0, 0.0001*self.n_iter))
            self.lpips_loss += self.LPIPS(x_1_recon_2, x_1, multi_scale=multiscale_lpips).mean() if w_lpips > 0 else torch.tensor(0)
            self.id_loss += self.IDloss(x_1_recon_2, x_1).mean() if w_id > 0 else torch.tensor(0)
            self.landmark_loss += self.landmarkloss(x_1_recon_2, x_1) if self.config['w']['landmark'] > 0 else torch.tensor(0)

        # downscale image
        x_1 = downscale(x_1, self.scale, self.scale_mode)
        x_1_recon = downscale(x_1_recon, self.scale, self.scale_mode)
        
        # Total loss
        w_l2, w_lpips, w_id = self.config['w']['l2'], self.config['w']['lpips'], self.config['w']['id']
        self.loss = w_l2*self.l2_loss + w_lpips*self.lpips_loss + w_id*self.id_loss
        
        if 'f_recon' in self.config['w']:
            self.feature_recon_loss = self.L2loss(fea_1, fea_recon) 
            self.loss += self.config['w']['f_recon']*self.feature_recon_loss
        if 'l1' in self.config['w'] and self.config['w']['l1']>0:
            self.l1_loss = self.L1loss(x_1_recon, x_1)
            self.loss += self.config['w']['l1']*self.l1_loss
        if 'landmark' in self.config['w']:
            self.loss += self.config['w']['landmark']*self.landmark_loss
        return self.loss

    def test(self, w=None, img=None, noise=None, zero_noise_input=True, return_latent=False, training_mode=False):        
        if 'n_iter' not in self.__dict__.keys():
            self.n_iter = 1e5
        out = self.get_image(w=w, img=img, noise=noise, training_mode=training_mode)
        x_1_recon, x_1, w_recon, w_delta, n_1, fea_1 = out[:6]
        output = [x_1, x_1_recon]
        if return_latent:
            output += [w_recon, fea_1]
        return output

    def log_loss(self, logger, n_iter, prefix='scripts'):
        logger.log_value(prefix + '/l2_loss', self.l2_loss.item(), n_iter + 1)
        logger.log_value(prefix + '/lpips_loss', self.lpips_loss.item(), n_iter + 1)
        logger.log_value(prefix + '/id_loss', self.id_loss.item(), n_iter + 1)
        logger.log_value(prefix + '/total_loss', self.loss.item(), n_iter + 1)
        if 'f_recon' in self.config['w']:
            logger.log_value(prefix + '/feature_recon_loss', self.feature_recon_loss.item(), n_iter + 1)
        if 'l1' in self.config['w'] and self.config['w']['l1']>0:
            logger.log_value(prefix + '/l1_loss', self.l1_loss.item(), n_iter + 1)
        if 'landmark' in self.config['w']:
            logger.log_value(prefix + '/landmark_loss', self.landmark_loss.item(), n_iter + 1)
        
    def save_image(self, log_dir, n_epoch, n_iter, prefix='/scripts/', w=None, img=None, noise=None, training_mode=True):
        return self.save_image_stylegan2(log_dir=log_dir, n_epoch=n_epoch, n_iter=n_iter, prefix=prefix, w=w, img=img, noise=noise, training_mode=training_mode)

    def save_image_stylegan2(self, log_dir, n_epoch, n_iter, prefix='/scripts/', w=None, img=None, noise=None, training_mode=True):
        os.makedirs(log_dir + prefix, exist_ok=True)
        with torch.no_grad():
            out = self.get_image(w=w, img=img, noise=noise, training_mode=training_mode)
            x_1_recon, x_1, w_recon, w_delta, n_1, fea_1 = out[:6]
            x_1 = downscale(x_1, self.scale, self.scale_mode)
            x_1_recon = downscale(x_1_recon, self.scale, self.scale_mode)
            out_img = torch.cat((x_1, x_1_recon), dim=3)
            #fs
            if 'use_fs_encoder' in self.config and self.config['use_fs_encoder']:
                k = self.idx_k 
                features = [None]*k + [fea_1] + [None]*(17-k)
                x_1_recon_2, _ = self.StyleGAN([w_recon], noise=n_1, input_is_latent=True, features_in=features, feature_scale=min(1.0, 0.0001*self.n_iter))
                x_1_recon_2 = downscale(x_1_recon_2, self.scale, self.scale_mode)
                out_img = torch.cat((x_1, x_1_recon, x_1_recon_2), dim=3)
            utils.save_image(clip_img(out_img[:1]), log_dir + prefix + 'epoch_' +str(n_epoch+1) + '_iter_' + str(n_iter+1) + '_0.jpg')
            if out_img.size(0)>1:
                utils.save_image(clip_img(out_img[1:]), log_dir + prefix + 'epoch_' +str(n_epoch+1) + '_iter_' + str(n_iter+1) + '_1.jpg')
                        
    def save_model(self, log_dir):
        torch.save(self.enc.state_dict(),'{:s}/enc.pth.tar'.format(log_dir))

    def save_checkpoint(self, n_epoch, log_dir):
        checkpoint_state = {
            'n_epoch': n_epoch,
            'enc_state_dict': self.enc.state_dict(),
            'enc_opt_state_dict': self.enc_opt.state_dict(),
            'enc_scheduler_state_dict': self.enc_scheduler.state_dict()
        }
        torch.save(checkpoint_state, '{:s}/checkpoint.pth'.format(log_dir))
        if (n_epoch+1)%10 == 0 :
            torch.save(checkpoint_state, '{:s}/checkpoint'.format(log_dir)+'_'+str(n_epoch+1)+'.pth')
    
    def load_model(self, log_dir):
        self.enc.load_state_dict(torch.load('{:s}/enc.pth.tar'.format(log_dir)))

    def load_checkpoint(self, checkpoint_path):
        state_dict = torch.load(checkpoint_path)
        self.enc.load_state_dict(state_dict['enc_state_dict'])
        self.enc_opt.load_state_dict(state_dict['enc_opt_state_dict'])
        self.enc_scheduler.load_state_dict(state_dict['enc_scheduler_state_dict'])
        return state_dict['n_epoch'] + 1

    def update(self, w=None, img=None, noise=None, real_img=None, n_iter=0):
        self.n_iter = n_iter
        self.enc_opt.zero_grad()
        self.compute_loss(w=w, img=img, noise=noise, real_img=real_img).backward()
        self.enc_opt.step()