Spaces:
Paused
Paused
File size: 19,543 Bytes
3de0e37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import sys
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from PIL import Image
from torch.autograd import grad
from torchvision import transforms, utils
import face_alignment
import lpips
current_dir = os.path.abspath(os.path.dirname(__file__))
sys.path.insert(0, current_dir)
from pixel2style2pixel.models.stylegan2.model import Generator, get_keys
from nets.feature_style_encoder import *
from arcface.iresnet import *
from face_parsing.model import BiSeNet
from ranger import Ranger
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from PIL import Image
from torch.autograd import grad
def clip_img(x):
"""Clip stylegan generated image to range(0,1)"""
img_tmp = x.clone()[0]
img_tmp = (img_tmp + 1) / 2
img_tmp = torch.clamp(img_tmp, 0, 1)
return [img_tmp.detach().cpu()]
def tensor_byte(x):
return x.element_size()*x.nelement()
def count_parameters(net):
s = sum([np.prod(list(mm.size())) for mm in net.parameters()])
print(s)
def stylegan_to_classifier(x, out_size=(224, 224)):
"""Clip image to range(0,1)"""
img_tmp = x.clone()
img_tmp = torch.clamp((0.5*img_tmp + 0.5), 0, 1)
img_tmp = F.interpolate(img_tmp, size=out_size, mode='bilinear')
img_tmp[:,0] = (img_tmp[:,0] - 0.485)/0.229
img_tmp[:,1] = (img_tmp[:,1] - 0.456)/0.224
img_tmp[:,2] = (img_tmp[:,2] - 0.406)/0.225
#img_tmp = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img_tmp)
return img_tmp
def downscale(x, scale_times=1, mode='bilinear'):
for i in range(scale_times):
x = F.interpolate(x, scale_factor=0.5, mode=mode)
return x
def upscale(x, scale_times=1, mode='bilinear'):
for i in range(scale_times):
x = F.interpolate(x, scale_factor=2, mode=mode)
return x
def hist_transform(source_tensor, target_tensor):
"""Histogram transformation"""
c, h, w = source_tensor.size()
s_t = source_tensor.view(c, -1)
t_t = target_tensor.view(c, -1)
s_t_sorted, s_t_indices = torch.sort(s_t)
t_t_sorted, t_t_indices = torch.sort(t_t)
for i in range(c):
s_t[i, s_t_indices[i]] = t_t_sorted[i]
return s_t.view(c, h, w)
def init_weights(m):
"""Initialize layers with Xavier uniform distribution"""
if type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
elif type(m) == nn.Linear:
nn.init.uniform_(m.weight, 0.0, 1.0)
if m.bias is not None:
nn.init.constant_(m.bias, 0.01)
def total_variation(x, delta=1):
"""Total variation, x: tensor of size (B, C, H, W)"""
out = torch.mean(torch.abs(x[:, :, :, :-delta] - x[:, :, :, delta:]))\
+ torch.mean(torch.abs(x[:, :, :-delta, :] - x[:, :, delta:, :]))
return out
def vgg_transform(x):
"""Adapt image for vgg network, x: image of range(0,1) subtracting ImageNet mean"""
r, g, b = torch.split(x, 1, 1)
out = torch.cat((b, g, r), dim = 1)
out = F.interpolate(out, size=(224, 224), mode='bilinear')
out = out*255.
return out
# warp image with flow
def normalize_axis(x,L):
return (x-1-(L-1)/2)*2/(L-1)
def unnormalize_axis(x,L):
return x*(L-1)/2+1+(L-1)/2
def torch_flow_to_th_sampling_grid(flow,h_src,w_src,use_cuda=False):
b,c,h_tgt,w_tgt=flow.size()
grid_y, grid_x = torch.meshgrid(torch.tensor(range(1,w_tgt+1)),torch.tensor(range(1,h_tgt+1)))
disp_x=flow[:,0,:,:]
disp_y=flow[:,1,:,:]
source_x=grid_x.unsqueeze(0).repeat(b,1,1).type_as(flow)+disp_x
source_y=grid_y.unsqueeze(0).repeat(b,1,1).type_as(flow)+disp_y
source_x_norm=normalize_axis(source_x,w_src)
source_y_norm=normalize_axis(source_y,h_src)
sampling_grid=torch.cat((source_x_norm.unsqueeze(3), source_y_norm.unsqueeze(3)), dim=3)
if use_cuda:
sampling_grid = sampling_grid.cuda()
return sampling_grid
def warp_image_torch(image, flow):
"""
Warp image (tensor, shape=[b, 3, h_src, w_src]) with flow (tensor, shape=[b, h_tgt, w_tgt, 2])
"""
b,c,h_src,w_src=image.size()
sampling_grid_torch = torch_flow_to_th_sampling_grid(flow, h_src, w_src)
warped_image_torch = F.grid_sample(image, sampling_grid_torch)
return warped_image_torch
class Trainer(nn.Module):
def __init__(self, config, opts):
super(Trainer, self).__init__()
# Load Hyperparameters
self.config = config
self.device = torch.device(self.config['device'])
self.scale = int(np.log2(config['resolution']/config['enc_resolution']))
self.scale_mode = 'bilinear'
self.opts = opts
self.n_styles = 2 * int(np.log2(config['resolution'])) - 2
self.idx_k = 5
if 'idx_k' in self.config:
self.idx_k = self.config['idx_k']
if 'stylegan_version' in self.config and self.config['stylegan_version'] == 3:
self.n_styles = 16
# Networks
in_channels = 256
if 'in_c' in self.config:
in_channels = config['in_c']
enc_residual = False
if 'enc_residual' in self.config:
enc_residual = self.config['enc_residual']
enc_residual_coeff = False
if 'enc_residual_coeff' in self.config:
enc_residual_coeff = self.config['enc_residual_coeff']
resnet_layers = [4,5,6]
if 'enc_start_layer' in self.config:
st_l = self.config['enc_start_layer']
resnet_layers = [st_l, st_l+1, st_l+2]
if 'scale_mode' in self.config:
self.scale_mode = self.config['scale_mode']
# Load encoder
self.stride = (self.config['fs_stride'], self.config['fs_stride'])
self.enc = fs_encoder_v2(n_styles=self.n_styles, opts=opts, residual=enc_residual, use_coeff=enc_residual_coeff, resnet_layer=resnet_layers, stride=self.stride)
##########################
# Other nets
self.StyleGAN = self.init_stylegan(config)
self.Arcface = iresnet50()
self.parsing_net = BiSeNet(n_classes=19)
# Optimizers
# Latent encoder
self.enc_params = list(self.enc.parameters())
if 'freeze_iresnet' in self.config and self.config['freeze_iresnet']:
self.enc_params = list(self.enc.styles.parameters())
if 'optimizer' in self.config and self.config['optimizer'] == 'ranger':
self.enc_opt = Ranger(self.enc_params, lr=config['lr'], betas=(config['beta_1'], config['beta_2']), weight_decay=config['weight_decay'])
else:
self.enc_opt = torch.optim.Adam(self.enc_params, lr=config['lr'], betas=(config['beta_1'], config['beta_2']), weight_decay=config['weight_decay'])
self.enc_scheduler = torch.optim.lr_scheduler.StepLR(self.enc_opt, step_size=config['step_size'], gamma=config['gamma'])
self.fea_avg = None
def initialize(self, stylegan_model_path, arcface_model_path, parsing_model_path):
# load StyleGAN model
stylegan_state_dict = torch.load(stylegan_model_path, map_location='cpu')
self.StyleGAN.load_state_dict(get_keys(stylegan_state_dict, 'decoder'), strict=True)
self.StyleGAN.to(self.device)
# get StyleGAN average latent in w space and the noise inputs
self.dlatent_avg = stylegan_state_dict['latent_avg'].to(self.device)
self.noise_inputs = [getattr(self.StyleGAN.noises, f'noise_{i}').to(self.device) for i in range(self.StyleGAN.num_layers)]
# load Arcface weight
self.Arcface.load_state_dict(torch.load(self.opts.arcface_model_path))
self.Arcface.eval()
# load face parsing net weight
self.parsing_net.load_state_dict(torch.load(self.opts.parsing_model_path))
self.parsing_net.eval()
# load lpips net weight
# self.loss_fn = lpips.LPIPS(net='alex', spatial=False)
# self.loss_fn.to(self.device)
def init_stylegan(self, config):
"""StyleGAN = G_main(
truncation_psi=config['truncation_psi'],
resolution=config['resolution'],
use_noise=config['use_noise'],
randomize_noise=config['randomize_noise']
)"""
StyleGAN = Generator(1024, 512, 8)
return StyleGAN
def mapping(self, z):
return self.StyleGAN.get_latent(z).detach()
def L1loss(self, input, target):
return nn.L1Loss()(input,target)
def L2loss(self, input, target):
return nn.MSELoss()(input,target)
def CEloss(self, x, target_age):
return nn.CrossEntropyLoss()(x, target_age)
def LPIPS(self, input, target, multi_scale=False):
if multi_scale:
out = 0
for k in range(3):
out += self.loss_fn.forward(downscale(input, k, self.scale_mode), downscale(target, k, self.scale_mode)).mean()
else:
out = self.loss_fn.forward(downscale(input, self.scale, self.scale_mode), downscale(target, self.scale, self.scale_mode)).mean()
return out
def IDloss(self, input, target):
x_1 = F.interpolate(input, (112,112))
x_2 = F.interpolate(target, (112,112))
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
if 'multi_layer_idloss' in self.config and self.config['multi_layer_idloss']:
id_1 = self.Arcface(x_1, return_features=True)
id_2 = self.Arcface(x_2, return_features=True)
return sum([1 - cos(id_1[i].flatten(start_dim=1), id_2[i].flatten(start_dim=1)) for i in range(len(id_1))])
else:
id_1 = self.Arcface(x_1)
id_2 = self.Arcface(x_2)
return 1 - cos(id_1, id_2)
def landmarkloss(self, input, target):
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
x_1 = stylegan_to_classifier(input, out_size=(512, 512))
x_2 = stylegan_to_classifier(target, out_size=(512,512))
out_1 = self.parsing_net(x_1)
out_2 = self.parsing_net(x_2)
parsing_loss = sum([1 - cos(out_1[i].flatten(start_dim=1), out_2[i].flatten(start_dim=1)) for i in range(len(out_1))])
return parsing_loss.mean()
def feature_match(self, enc_feat, dec_feat, layer_idx=None):
loss = []
if layer_idx is None:
layer_idx = [i for i in range(len(enc_feat))]
for i in layer_idx:
loss.append(self.L1loss(enc_feat[i], dec_feat[i]))
return loss
def encode(self, img):
w_recon, fea = self.enc(downscale(img, self.scale, self.scale_mode))
w_recon = w_recon + self.dlatent_avg
return w_recon, fea
def get_image(self, w=None, img=None, noise=None, zero_noise_input=True, training_mode=True):
x_1, n_1 = img, noise
if x_1 is None:
x_1, _ = self.StyleGAN([w], input_is_latent=True, noise = n_1)
w_delta = None
fea = None
features = None
return_features = False
# Reconstruction
k = 0
if 'use_fs_encoder' in self.config and self.config['use_fs_encoder']:
return_features = True
k = self.idx_k
w_recon, fea = self.enc(downscale(x_1, self.scale, self.scale_mode))
w_recon = w_recon + self.dlatent_avg
features = [None]*k + [fea] + [None]*(17-k)
else:
w_recon = self.enc(downscale(x_1, self.scale, self.scale_mode)) + self.dlatent_avg
# generate image
x_1_recon, fea_recon = self.StyleGAN([w_recon], input_is_latent=True, return_features=True, features_in=features, feature_scale=min(1.0, 0.0001*self.n_iter))
fea_recon = fea_recon[k].detach()
return [x_1_recon, x_1[:,:3,:,:], w_recon, w_delta, n_1, fea, fea_recon]
def compute_loss(self, w=None, img=None, noise=None, real_img=None):
return self.compute_loss_stylegan2(w=w, img=img, noise=noise, real_img=real_img)
def compute_loss_stylegan2(self, w=None, img=None, noise=None, real_img=None):
if img is None:
# generate synthetic images
if noise is None:
noise = [torch.randn(w.size()[:1] + ee.size()[1:]).to(self.device) for ee in self.noise_inputs]
img, _ = self.StyleGAN([w], input_is_latent=True, noise = noise)
img = img.detach()
if img is not None and real_img is not None:
# concat synthetic and real data
img = torch.cat([img, real_img], dim=0)
noise = [torch.cat([ee, ee], dim=0) for ee in noise]
out = self.get_image(w=w, img=img, noise=noise)
x_1_recon, x_1, w_recon, w_delta, n_1, fea_1, fea_recon = out
# Loss setting
w_l2, w_lpips, w_id = self.config['w']['l2'], self.config['w']['lpips'], self.config['w']['id']
b = x_1.size(0)//2
if 'l2loss_on_real_image' in self.config and self.config['l2loss_on_real_image']:
b = x_1.size(0)
self.l2_loss = self.L2loss(x_1_recon[:b], x_1[:b]) if w_l2 > 0 else torch.tensor(0) # l2 loss only on synthetic data
# LPIPS
multiscale_lpips=False if 'multiscale_lpips' not in self.config else self.config['multiscale_lpips']
self.lpips_loss = self.LPIPS(x_1_recon, x_1, multi_scale=multiscale_lpips).mean() if w_lpips > 0 else torch.tensor(0)
self.id_loss = self.IDloss(x_1_recon, x_1).mean() if w_id > 0 else torch.tensor(0)
self.landmark_loss = self.landmarkloss(x_1_recon, x_1) if self.config['w']['landmark'] > 0 else torch.tensor(0)
if 'use_fs_encoder' in self.config and self.config['use_fs_encoder']:
k = self.idx_k
features = [None]*k + [fea_1] + [None]*(17-k)
x_1_recon_2, _ = self.StyleGAN([w_recon], noise=n_1, input_is_latent=True, features_in=features, feature_scale=min(1.0, 0.0001*self.n_iter))
self.lpips_loss += self.LPIPS(x_1_recon_2, x_1, multi_scale=multiscale_lpips).mean() if w_lpips > 0 else torch.tensor(0)
self.id_loss += self.IDloss(x_1_recon_2, x_1).mean() if w_id > 0 else torch.tensor(0)
self.landmark_loss += self.landmarkloss(x_1_recon_2, x_1) if self.config['w']['landmark'] > 0 else torch.tensor(0)
# downscale image
x_1 = downscale(x_1, self.scale, self.scale_mode)
x_1_recon = downscale(x_1_recon, self.scale, self.scale_mode)
# Total loss
w_l2, w_lpips, w_id = self.config['w']['l2'], self.config['w']['lpips'], self.config['w']['id']
self.loss = w_l2*self.l2_loss + w_lpips*self.lpips_loss + w_id*self.id_loss
if 'f_recon' in self.config['w']:
self.feature_recon_loss = self.L2loss(fea_1, fea_recon)
self.loss += self.config['w']['f_recon']*self.feature_recon_loss
if 'l1' in self.config['w'] and self.config['w']['l1']>0:
self.l1_loss = self.L1loss(x_1_recon, x_1)
self.loss += self.config['w']['l1']*self.l1_loss
if 'landmark' in self.config['w']:
self.loss += self.config['w']['landmark']*self.landmark_loss
return self.loss
def test(self, w=None, img=None, noise=None, zero_noise_input=True, return_latent=False, training_mode=False):
if 'n_iter' not in self.__dict__.keys():
self.n_iter = 1e5
out = self.get_image(w=w, img=img, noise=noise, training_mode=training_mode)
x_1_recon, x_1, w_recon, w_delta, n_1, fea_1 = out[:6]
output = [x_1, x_1_recon]
if return_latent:
output += [w_recon, fea_1]
return output
def log_loss(self, logger, n_iter, prefix='scripts'):
logger.log_value(prefix + '/l2_loss', self.l2_loss.item(), n_iter + 1)
logger.log_value(prefix + '/lpips_loss', self.lpips_loss.item(), n_iter + 1)
logger.log_value(prefix + '/id_loss', self.id_loss.item(), n_iter + 1)
logger.log_value(prefix + '/total_loss', self.loss.item(), n_iter + 1)
if 'f_recon' in self.config['w']:
logger.log_value(prefix + '/feature_recon_loss', self.feature_recon_loss.item(), n_iter + 1)
if 'l1' in self.config['w'] and self.config['w']['l1']>0:
logger.log_value(prefix + '/l1_loss', self.l1_loss.item(), n_iter + 1)
if 'landmark' in self.config['w']:
logger.log_value(prefix + '/landmark_loss', self.landmark_loss.item(), n_iter + 1)
def save_image(self, log_dir, n_epoch, n_iter, prefix='/scripts/', w=None, img=None, noise=None, training_mode=True):
return self.save_image_stylegan2(log_dir=log_dir, n_epoch=n_epoch, n_iter=n_iter, prefix=prefix, w=w, img=img, noise=noise, training_mode=training_mode)
def save_image_stylegan2(self, log_dir, n_epoch, n_iter, prefix='/scripts/', w=None, img=None, noise=None, training_mode=True):
os.makedirs(log_dir + prefix, exist_ok=True)
with torch.no_grad():
out = self.get_image(w=w, img=img, noise=noise, training_mode=training_mode)
x_1_recon, x_1, w_recon, w_delta, n_1, fea_1 = out[:6]
x_1 = downscale(x_1, self.scale, self.scale_mode)
x_1_recon = downscale(x_1_recon, self.scale, self.scale_mode)
out_img = torch.cat((x_1, x_1_recon), dim=3)
#fs
if 'use_fs_encoder' in self.config and self.config['use_fs_encoder']:
k = self.idx_k
features = [None]*k + [fea_1] + [None]*(17-k)
x_1_recon_2, _ = self.StyleGAN([w_recon], noise=n_1, input_is_latent=True, features_in=features, feature_scale=min(1.0, 0.0001*self.n_iter))
x_1_recon_2 = downscale(x_1_recon_2, self.scale, self.scale_mode)
out_img = torch.cat((x_1, x_1_recon, x_1_recon_2), dim=3)
utils.save_image(clip_img(out_img[:1]), log_dir + prefix + 'epoch_' +str(n_epoch+1) + '_iter_' + str(n_iter+1) + '_0.jpg')
if out_img.size(0)>1:
utils.save_image(clip_img(out_img[1:]), log_dir + prefix + 'epoch_' +str(n_epoch+1) + '_iter_' + str(n_iter+1) + '_1.jpg')
def save_model(self, log_dir):
torch.save(self.enc.state_dict(),'{:s}/enc.pth.tar'.format(log_dir))
def save_checkpoint(self, n_epoch, log_dir):
checkpoint_state = {
'n_epoch': n_epoch,
'enc_state_dict': self.enc.state_dict(),
'enc_opt_state_dict': self.enc_opt.state_dict(),
'enc_scheduler_state_dict': self.enc_scheduler.state_dict()
}
torch.save(checkpoint_state, '{:s}/checkpoint.pth'.format(log_dir))
if (n_epoch+1)%10 == 0 :
torch.save(checkpoint_state, '{:s}/checkpoint'.format(log_dir)+'_'+str(n_epoch+1)+'.pth')
def load_model(self, log_dir):
self.enc.load_state_dict(torch.load('{:s}/enc.pth.tar'.format(log_dir)))
def load_checkpoint(self, checkpoint_path):
state_dict = torch.load(checkpoint_path)
self.enc.load_state_dict(state_dict['enc_state_dict'])
self.enc_opt.load_state_dict(state_dict['enc_opt_state_dict'])
self.enc_scheduler.load_state_dict(state_dict['enc_scheduler_state_dict'])
return state_dict['n_epoch'] + 1
def update(self, w=None, img=None, noise=None, real_img=None, n_iter=0):
self.n_iter = n_iter
self.enc_opt.zero_grad()
self.compute_loss(w=w, img=img, noise=noise, real_img=real_img).backward()
self.enc_opt.step()
|