Spaces:
Paused
Paused
File size: 14,779 Bytes
3de0e37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# -*- coding: utf-8 -*-
"""
# File name: hair_editor.py
# Time : 2021/11/18 17:21
# Author: [email protected]
# Description:
"""
import os
import pickle
from glob import glob
import cv2
import numpy as np
import torch
import my_torchlib
from color_texture_branch.solver import Solver as SolveFeature
from external_code.face_parsing.my_parsing_util import FaceParsing
from global_value_utils import HAIR_IDX, PARSING_LABEL_LIST
from poisson_blending import poisson_blending
from sean_codes.models.pix2pix_model import Pix2PixModel
from sean_codes.options.test_options import TestOptions
from shape_branch.solver import Solver as SolverMask
from util.imutil import write_rgb
# adaptor_root_dir = '/data1/guoxuyang/myWorkSpace/hair_editing'
# sys.path.append(adaptor_root_dir)
# sys.path.append(os.path.join(adaptor_root_dir, 'external_code/face_3DDFA'))
def change_status(model, new_status):
for m in model.modules():
if hasattr(m, 'status'):
m.status = new_status
class HairEditor:
"""
This is the basic module, that could achieve many editing task. ui/hair_swap.py/Backend succeed this class.
"""
def __init__(self, load_feature_model=True, load_mask_model=True):
self.opt = TestOptions().parse()
self.opt.status = 'test'
self.sean_model = Pix2PixModel(self.opt)
self.sean_model.eval()
self.img_size = 256
self.device = torch.device('cuda', 0)
if load_feature_model:
from color_texture_branch.config import cfg as cfg_feature
self.solver_feature = SolveFeature(cfg_feature, device=self.device, local_rank=-1, training=False)
self.feature_encoder = self.solver_feature.dis
self.feature_generator = self.solver_feature.gen
self.feature_rgb_predictor = self.solver_feature.rgb_model
# self.feature_curliness_predictor = self.solver_feature.curliness_model
# ckpt_dir = 'external_model_params/disentangle_checkpoints/' + cfg_app.experiment_name + '/checkpoints'
ckpt_dir = 'model_trained/color_texture/' + cfg_feature.experiment_name + '/checkpoints'
ckpt = my_torchlib.load_checkpoint(ckpt_dir)
for model_name in ['Model_G', 'Model_D']:
cur_model = ckpt[model_name]
if list(cur_model)[0].startswith('module'):
ckpt[model_name] = {kk[7:]: cur_model[kk] for kk in cur_model}
self.feature_generator.load_state_dict(ckpt['Model_G'], strict=True)
self.feature_encoder.load_state_dict(ckpt['Model_D'], strict=True)
# if 'curliness' in cfg_feature.predictor:
# ckpt = my_torchlib.load_checkpoint(cfg_feature.predictor.curliness.root_dir + '/checkpoints')
# self.feature_curliness_predictor.load_state_dict(ckpt['Predictor'], strict=True)
if 'rgb' in cfg_feature.predictor:
ckpt = my_torchlib.load_checkpoint(cfg_feature.predictor.rgb.root_dir + '/checkpoints')
self.feature_rgb_predictor.load_state_dict(ckpt['Predictor'], strict=True)
# load unsupervised direction
existing_dirs_dir = os.path.join('model_trained/color_texture', cfg_feature.experiment_name,
'texture_dir_used')
if os.path.exists(existing_dirs_dir):
existing_dirs_list = os.listdir(existing_dirs_dir)
existing_dirs_list.sort()
existing_dirs = []
for dd in existing_dirs_list:
with open(os.path.join(existing_dirs_dir, dd), 'rb') as f:
existing_dirs.append(pickle.load(f).to(self.device))
self.texture_dirs = existing_dirs
if load_mask_model:
from shape_branch.config import cfg as cfg_mask
self.solver_mask = SolverMask(cfg_mask, device=self.device, local_rank=-1, training=False)
self.mask_generator = self.solver_mask.gen
##############################################
# change to your checkpoints dir #
##############################################
ckpt_dir = 'model_trained/shape/' + cfg_mask.experiment_name + '/checkpoints'
ckpt = my_torchlib.load_checkpoint(ckpt_dir)
for model_name in ['Model_G', 'Model_D']:
cur_model = ckpt[model_name]
if list(cur_model)[0].startswith('module'):
ckpt[model_name] = {kk[7:]: cur_model[kk] for kk in cur_model}
self.mask_generator.load_state_dict(ckpt['Model_G'], strict=True)
# load unsupervised direction
existing_dirs_dir = os.path.join('model_trained/shape', cfg_mask.experiment_name, 'shape_dir_used')
if os.path.exists(existing_dirs_dir):
existing_dirs_list = os.listdir(existing_dirs_dir)
existing_dirs_list.sort()
existing_dirs = []
for dd in existing_dirs_list:
with open(os.path.join(existing_dirs_dir, dd), 'rb') as f:
existing_dirs.append(pickle.load(f).to(self.device))
self.shape_dirs = existing_dirs
def preprocess_img(self, img):
img = cv2.resize(img.astype('uint8'), (self.img_size, self.img_size))
return (np.transpose(img, [2, 0, 1]) / 127.5 - 1.0)[None, ...]
def preprocess_mask(self, mask_img):
mask_img = cv2.resize(mask_img.astype('uint8'), (self.img_size, self.img_size),
interpolation=cv2.INTER_NEAREST)
return mask_img[None, None, :, :]
@staticmethod
def load_average_feature():
############### load average features
# average_style_code_folder = 'styles_test/mean_style_code/mean/'
average_style_code_folder = 'sean_codes/styles_test/mean_style_code/median/'
input_style_dic = {}
############### hard coding for categories
for i in range(19):
input_style_dic[str(i)] = {}
average_category_folder_list = glob(os.path.join(average_style_code_folder, str(i), '*.npy'))
average_category_list = [os.path.splitext(os.path.basename(name))[0] for name in
average_category_folder_list]
for style_code_path in average_category_list:
input_style_dic[str(i)][style_code_path] = torch.from_numpy(
np.load(os.path.join(average_style_code_folder, str(i), style_code_path + '.npy'))).cuda()
return input_style_dic
def get_code(self, hair_img, hair_parsing):
# generate style code
data = {'label': torch.tensor(hair_parsing, dtype=torch.float32),
'instance': torch.tensor(0),
'image': torch.tensor(hair_img, dtype=torch.float32),
'path': ['temp/temp_npy']}
change_status(self.sean_model, 'test')
hair_img_code = self.sean_model(data, mode='style_code')
return hair_img_code
def gen_img(self, code, parsing):
# load style code
if not isinstance(code, torch.Tensor):
code = torch.tensor(code)
obj_dic = self.load_average_feature()
for idx in range(19):
cur_code = code[0, idx]
if not torch.all(cur_code == 0):
obj_dic[str(idx)]['ACE'] = cur_code
temp_face_image = torch.zeros((0, 3, self.img_size, self.img_size)) # place holder
data = {'label': torch.tensor(parsing, dtype=torch.float32),
'instance': torch.tensor(0),
'image': torch.tensor(temp_face_image, dtype=torch.float32),
'obj_dic': obj_dic}
change_status(self.sean_model, 'UI_mode')
# self.model = self.model.to(code.device)
generated = self.sean_model(data, mode='UI_mode')[0]
return generated
def generate_by_sean(self, face_img_code, hair_code, target_seg):
"""
:param face_img_code: please input with the shape [19, 512]
:param hair_code: please input with the shape [512]
:param target_seg:
:return:
"""
# load style code
obj_dic = self.load_average_feature()
for idx in range(19):
if idx == HAIR_IDX:
cur_code = hair_code
# cur_code = face_img_code[0, idx]
else:
cur_code = face_img_code[idx]
if not torch.all(face_img_code == 0):
obj_dic[str(idx)]['ACE'] = cur_code
data = {'label': torch.tensor(target_seg, dtype=torch.float32),
'instance': torch.tensor(0),
'obj_dic': obj_dic,
'image': None}
change_status(self.sean_model, 'UI_mode')
generated = self.sean_model(data, mode='UI_mode')[0]
return generated
def generate_instance_transfer_img(self, face_img, face_parsing, hair_img, hair_parsing, target_seg, edit_data=None,
temp_path='temp'):
# generate style code
data = {'label': torch.tensor(face_parsing, dtype=torch.float32),
'instance': torch.tensor(0),
'image': torch.tensor(face_img, dtype=torch.float32),
'path': ['temp/temp_npy']}
face_img_code = self.sean_model(data, mode='style_code')
if hair_img is None:
hair_img_code = face_img_code
else:
data = {'label': torch.tensor(hair_parsing, dtype=torch.float32),
'instance': torch.tensor(0),
'image': torch.tensor(hair_img, dtype=torch.float32),
'path': ['temp/temp_npy']}
change_status(self.sean_model, 'test')
hair_img_code = self.sean_model(data, mode='style_code')
hair_code = hair_img_code[0, HAIR_IDX]
if edit_data is not None:
hair_code = self.solver_feature.edit_infer(hair_code[None, ...], edit_data)[0]
return self.generate_by_sean(face_img_code[0], hair_code, target_seg)
def get_hair_color(self, img):
parsing, _ = FaceParsing.parsing_img(img)
parsing = FaceParsing.swap_parsing_label_to_celeba_mask(parsing)
parsing = cv2.resize(parsing.astype('uint8'), (1024, 1024), interpolation=cv2.INTER_NEAREST)
img = cv2.resize(img.astype('uint8'), (1024, 1024))
hair_mask = (parsing == HAIR_IDX).astype('uint8')
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(19, 19))
hair_mask = cv2.erode(hair_mask, kernel, iterations=1)
points = img[hair_mask.astype('bool')]
moment1 = points.mean(axis=0)
return moment1
@staticmethod
def draw_landmarks(img, lms):
lms = lms / 2
lms = lms.astype('int')
for idx, point in enumerate(lms):
font = cv2.FONT_HERSHEY_SIMPLEX
pos = (point[0], point[1])
cv2.circle(img, pos, 2, color=(139, 0, 0))
cv2.putText(img, str(idx + 1), pos, font, 0.18, (255, 0, 0), 1, cv2.LINE_AA)
return img
def postprocess_blending(self, face_img, res_img, face_parsing, target_parsing, verbose_print=False, blending=True):
"""
Blend original face img and result image with poisson blending.
If not blend, the result image will look slightly different from original image in some details in
non-hair region, but the image quality will be better.
:param face_img:
:param res_img:
:param face_parsing:
:param target_parsing:
:param verbose_print:
:param blending: If `False`, the result image will do some trivial thing like transferring data type
:return:
"""
if verbose_print:
print("Post process for the result image...")
def from_tensor_order_to_cv2(tensor_img, is_mask=False):
if isinstance(tensor_img, torch.Tensor):
tensor_img = tensor_img.detach().cpu().numpy()
if len(tensor_img.shape) == 4:
tensor_img = tensor_img[0]
if len(tensor_img.shape) == 2:
tensor_img = tensor_img[None, ...]
if tensor_img.shape[2] <= 3:
return tensor_img
res = np.transpose(tensor_img, [1, 2, 0])
if not is_mask:
res = res * 127.5 + 127.5
return res
res_img = from_tensor_order_to_cv2(res_img)
res_img = res_img.astype('uint8')
if blending:
target_parsing = from_tensor_order_to_cv2(target_parsing, is_mask=True)
face_img = from_tensor_order_to_cv2(face_img)
face_img = face_img.astype('uint8')
face_parsing = from_tensor_order_to_cv2(face_parsing, is_mask=True)
res_mask = np.logical_or(target_parsing == HAIR_IDX, face_parsing == HAIR_IDX).astype('uint8')
kernel13 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(13, 13))
kernel5 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(5, 5))
res_mask_dilated = cv2.dilate(res_mask, kernel13, iterations=1)[..., None]
res_mask_dilated5 = cv2.dilate(res_mask, kernel5, iterations=1)[..., None]
bg_mask = (target_parsing == PARSING_LABEL_LIST.index('background'))
res_mask_dilated = res_mask_dilated * (1 - bg_mask) + res_mask_dilated5 * bg_mask
face_to_hair = poisson_blending(face_img, res_img, 1 - res_mask_dilated, with_gamma=True)
return face_to_hair, res_mask_dilated
else:
return res_img, None
def crop_face(self, img_rgb, save_path=None):
"""
crop the face part in the image to adapt the editing system
:param img_rgb:
:param save_path:
:return:
"""
from external_code.crop import recreate_aligned_images
from external_code.landmarks_util import predictor_dict, detector
predictor_68 = predictor_dict[68]
bbox = detector(img_rgb, 0)[0]
lm_68 = np.array([[p.x, p.y] for p in predictor_68(img_rgb, bbox).parts()])
crop_img_pil, lm_68 = recreate_aligned_images(img_rgb, lm_68, output_size=self.img_size)
img_rgb = np.array(crop_img_pil)
if save_path is not None:
write_rgb(save_path, img_rgb)
return img_rgb
def get_mask(self, img_rgb):
parsing, _ = FaceParsing.parsing_img(img_rgb)
parsing = FaceParsing.swap_parsing_label_to_celeba_mask(parsing)
mask_img = cv2.resize(parsing.astype('uint8'), (self.img_size, self.img_size), interpolation=cv2.INTER_NEAREST)
return mask_img
|