Commit
·
117d89c
1
Parent(s):
9b8b426
remove submit tab
Browse files- app.py +1 -110
- src/about.py +0 -31
- src/display/utils.py +0 -16
- src/leaderboard/read_evals.py +1 -4
- src/populate.py +2 -41
- src/submission/check_validity.py +14 -77
- src/submission/submit.py +0 -128
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import subprocess
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import pandas.io.formats.style as style
|
@@ -6,7 +5,6 @@ from apscheduler.schedulers.background import BackgroundScheduler
|
|
6 |
from huggingface_hub import snapshot_download
|
7 |
|
8 |
from src.about import (
|
9 |
-
EVALUATION_QUEUE_TEXT,
|
10 |
INTRODUCTION_TEXT,
|
11 |
LLM_BENCHMARKS_TEXT,
|
12 |
TITLE,
|
@@ -15,20 +13,15 @@ from src.display.css_html_js import custom_css
|
|
15 |
from src.display.utils import (
|
16 |
BENCHMARK_COLS,
|
17 |
COLS,
|
18 |
-
EVAL_COLS,
|
19 |
-
EVAL_TYPES,
|
20 |
NUMERIC_INTERVALS,
|
21 |
TYPES,
|
22 |
AutoEvalColumn,
|
23 |
ModelType,
|
24 |
-
ModelAPI,
|
25 |
fields,
|
26 |
-
WeightType,
|
27 |
Precision
|
28 |
)
|
29 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
-
from src.populate import
|
31 |
-
from src.submission.submit import add_new_eval
|
32 |
|
33 |
|
34 |
def restart_space():
|
@@ -53,13 +46,6 @@ except Exception:
|
|
53 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
54 |
leaderboard_df = original_df.copy()
|
55 |
|
56 |
-
(
|
57 |
-
finished_eval_queue_df,
|
58 |
-
running_eval_queue_df,
|
59 |
-
pending_eval_queue_df,
|
60 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
61 |
-
|
62 |
-
|
63 |
# Searching and filtering
|
64 |
def update_table(
|
65 |
hidden_df: pd.DataFrame,
|
@@ -251,101 +237,6 @@ with demo:
|
|
251 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
252 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
253 |
|
254 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
255 |
-
with gr.Column():
|
256 |
-
with gr.Row():
|
257 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
258 |
-
|
259 |
-
with gr.Column():
|
260 |
-
with gr.Accordion(
|
261 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
262 |
-
open=False,
|
263 |
-
):
|
264 |
-
with gr.Row():
|
265 |
-
finished_eval_table = gr.components.Dataframe(
|
266 |
-
value=finished_eval_queue_df,
|
267 |
-
headers=EVAL_COLS,
|
268 |
-
datatype=EVAL_TYPES,
|
269 |
-
row_count=5,
|
270 |
-
)
|
271 |
-
with gr.Accordion(
|
272 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
273 |
-
open=False,
|
274 |
-
):
|
275 |
-
with gr.Row():
|
276 |
-
running_eval_table = gr.components.Dataframe(
|
277 |
-
value=running_eval_queue_df,
|
278 |
-
headers=EVAL_COLS,
|
279 |
-
datatype=EVAL_TYPES,
|
280 |
-
row_count=5,
|
281 |
-
)
|
282 |
-
|
283 |
-
with gr.Accordion(
|
284 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
285 |
-
open=False,
|
286 |
-
):
|
287 |
-
with gr.Row():
|
288 |
-
pending_eval_table = gr.components.Dataframe(
|
289 |
-
value=pending_eval_queue_df,
|
290 |
-
headers=EVAL_COLS,
|
291 |
-
datatype=EVAL_TYPES,
|
292 |
-
row_count=5,
|
293 |
-
)
|
294 |
-
with gr.Row():
|
295 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
296 |
-
|
297 |
-
with gr.Row():
|
298 |
-
with gr.Column():
|
299 |
-
model_api = gr.Dropdown(
|
300 |
-
choices=[a.value.name for a in ModelAPI],
|
301 |
-
label="Model API",
|
302 |
-
multiselect=False,
|
303 |
-
value="hf",
|
304 |
-
interactive=True,
|
305 |
-
)
|
306 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
307 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
308 |
-
model_type = gr.Dropdown(
|
309 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
310 |
-
label="Model type",
|
311 |
-
multiselect=False,
|
312 |
-
value=None,
|
313 |
-
interactive=True,
|
314 |
-
)
|
315 |
-
|
316 |
-
with gr.Column():
|
317 |
-
precision = gr.Dropdown(
|
318 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
319 |
-
label="Precision",
|
320 |
-
multiselect=False,
|
321 |
-
value="float16",
|
322 |
-
interactive=True,
|
323 |
-
)
|
324 |
-
weight_type = gr.Dropdown(
|
325 |
-
choices=[i.value.name for i in WeightType],
|
326 |
-
label="Weights type",
|
327 |
-
multiselect=False,
|
328 |
-
value="Original",
|
329 |
-
interactive=True,
|
330 |
-
)
|
331 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
332 |
-
|
333 |
-
submit_button = gr.Button("Submit Eval")
|
334 |
-
submission_result = gr.Markdown()
|
335 |
-
submit_button.click(
|
336 |
-
add_new_eval,
|
337 |
-
[
|
338 |
-
model_api,
|
339 |
-
model_name_textbox,
|
340 |
-
base_model_name_textbox,
|
341 |
-
revision_name_textbox,
|
342 |
-
precision,
|
343 |
-
weight_type,
|
344 |
-
model_type,
|
345 |
-
],
|
346 |
-
submission_result,
|
347 |
-
)
|
348 |
-
|
349 |
|
350 |
scheduler = BackgroundScheduler()
|
351 |
scheduler.add_job(restart_space, "interval", hours=1)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import pandas.io.formats.style as style
|
|
|
5 |
from huggingface_hub import snapshot_download
|
6 |
|
7 |
from src.about import (
|
|
|
8 |
INTRODUCTION_TEXT,
|
9 |
LLM_BENCHMARKS_TEXT,
|
10 |
TITLE,
|
|
|
13 |
from src.display.utils import (
|
14 |
BENCHMARK_COLS,
|
15 |
COLS,
|
|
|
|
|
16 |
NUMERIC_INTERVALS,
|
17 |
TYPES,
|
18 |
AutoEvalColumn,
|
19 |
ModelType,
|
|
|
20 |
fields,
|
|
|
21 |
Precision
|
22 |
)
|
23 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
24 |
+
from src.populate import get_leaderboard_df
|
|
|
25 |
|
26 |
|
27 |
def restart_space():
|
|
|
46 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
47 |
leaderboard_df = original_df.copy()
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# Searching and filtering
|
50 |
def update_table(
|
51 |
hidden_df: pd.DataFrame,
|
|
|
237 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
238 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
scheduler = BackgroundScheduler()
|
242 |
scheduler.add_job(restart_space, "interval", hours=1)
|
src/about.py
CHANGED
@@ -20,7 +20,6 @@ class Tasks(Enum):
|
|
20 |
task5 = Task("icelandic_belebele", "exact_match,get-answer", "Belebele (IS)")
|
21 |
task6 = Task("icelandic_arc_challenge", "exact_match,get-answer", "ARC-Challenge-IS")
|
22 |
|
23 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
24 |
# ---------------------------------------------------
|
25 |
|
26 |
|
@@ -70,33 +69,3 @@ A machine-translated version of the ARC-Challenge multiple-choice question-answe
|
|
70 |
|
71 |
"""
|
72 |
|
73 |
-
EVALUATION_QUEUE_TEXT = """
|
74 |
-
## Some good practices before submitting a model
|
75 |
-
|
76 |
-
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
77 |
-
```python
|
78 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
79 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
80 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
81 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
82 |
-
```
|
83 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
84 |
-
|
85 |
-
Note: make sure your model is public!
|
86 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
87 |
-
|
88 |
-
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
89 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
90 |
-
|
91 |
-
### 3) Make sure your model has an open license!
|
92 |
-
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
93 |
-
|
94 |
-
### 4) Fill up your model card
|
95 |
-
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
96 |
-
|
97 |
-
## In case of model failure
|
98 |
-
If your model is displayed in the `FAILED` category, its execution stopped.
|
99 |
-
Make sure you have followed the above steps first.
|
100 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
101 |
-
"""
|
102 |
-
|
|
|
20 |
task5 = Task("icelandic_belebele", "exact_match,get-answer", "Belebele (IS)")
|
21 |
task6 = Task("icelandic_arc_challenge", "exact_match,get-answer", "ARC-Challenge-IS")
|
22 |
|
|
|
23 |
# ---------------------------------------------------
|
24 |
|
25 |
|
|
|
69 |
|
70 |
"""
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/utils.py
CHANGED
@@ -32,7 +32,6 @@ for task in Tasks:
|
|
32 |
# Model information
|
33 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
@@ -50,7 +49,6 @@ class EvalQueueColumn: # Queue column
|
|
50 |
revision = ColumnContent("revision", "str", True)
|
51 |
private = ColumnContent("private", "bool", True)
|
52 |
precision = ColumnContent("precision", "str", True)
|
53 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
status = ColumnContent("status", "str", True)
|
55 |
|
56 |
## All the model information that we might need
|
@@ -89,18 +87,10 @@ class ModelType(Enum):
|
|
89 |
return ModelType.IFT
|
90 |
return ModelType.Unknown
|
91 |
|
92 |
-
class WeightType(Enum):
|
93 |
-
Adapter = ModelDetails("Adapter")
|
94 |
-
Original = ModelDetails("Original")
|
95 |
-
Delta = ModelDetails("Delta")
|
96 |
-
|
97 |
class Precision(Enum):
|
98 |
float16 = ModelDetails("float16")
|
99 |
bfloat16 = ModelDetails("bfloat16")
|
100 |
float32 = ModelDetails("float32")
|
101 |
-
#qt_8bit = ModelDetails("8bit")
|
102 |
-
#qt_4bit = ModelDetails("4bit")
|
103 |
-
#qt_GPTQ = ModelDetails("GPTQ")
|
104 |
Unknown = ModelDetails("?")
|
105 |
|
106 |
def from_str(precision):
|
@@ -110,12 +100,6 @@ class Precision(Enum):
|
|
110 |
return Precision.bfloat16
|
111 |
if precision in ["float32"]:
|
112 |
return Precision.float32
|
113 |
-
#if precision in ["8bit"]:
|
114 |
-
# return Precision.qt_8bit
|
115 |
-
#if precision in ["4bit"]:
|
116 |
-
# return Precision.qt_4bit
|
117 |
-
#if precision in ["GPTQ", "None"]:
|
118 |
-
# return Precision.qt_GPTQ
|
119 |
return Precision.Unknown
|
120 |
|
121 |
# Column selection
|
|
|
32 |
# Model information
|
33 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
|
|
35 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
36 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
37 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
|
|
49 |
revision = ColumnContent("revision", "str", True)
|
50 |
private = ColumnContent("private", "bool", True)
|
51 |
precision = ColumnContent("precision", "str", True)
|
|
|
52 |
status = ColumnContent("status", "str", True)
|
53 |
|
54 |
## All the model information that we might need
|
|
|
87 |
return ModelType.IFT
|
88 |
return ModelType.Unknown
|
89 |
|
|
|
|
|
|
|
|
|
|
|
90 |
class Precision(Enum):
|
91 |
float16 = ModelDetails("float16")
|
92 |
bfloat16 = ModelDetails("bfloat16")
|
93 |
float32 = ModelDetails("float32")
|
|
|
|
|
|
|
94 |
Unknown = ModelDetails("?")
|
95 |
|
96 |
def from_str(precision):
|
|
|
100 |
return Precision.bfloat16
|
101 |
if precision in ["float32"]:
|
102 |
return Precision.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
return Precision.Unknown
|
104 |
|
105 |
# Column selection
|
src/leaderboard/read_evals.py
CHANGED
@@ -8,7 +8,7 @@ import dateutil
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
@@ -24,7 +24,6 @@ class EvalResult:
|
|
24 |
results: dict
|
25 |
precision: Precision = Precision.Unknown
|
26 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
architecture: str = "Unknown"
|
29 |
license: str = "?"
|
30 |
likes: int = 0
|
@@ -99,7 +98,6 @@ class EvalResult:
|
|
99 |
with open(request_file, "r") as f:
|
100 |
request = json.load(f)
|
101 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
102 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
103 |
self.license = request.get("license", "?")
|
104 |
self.likes = request.get("likes", 0)
|
105 |
self.num_params = request.get("params", 0)
|
@@ -115,7 +113,6 @@ class EvalResult:
|
|
115 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
116 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
117 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
118 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
119 |
AutoEvalColumn.architecture.name: self.architecture,
|
120 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
121 |
AutoEvalColumn.revision.name: self.revision,
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
|
|
24 |
results: dict
|
25 |
precision: Precision = Precision.Unknown
|
26 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
|
|
27 |
architecture: str = "Unknown"
|
28 |
license: str = "?"
|
29 |
likes: int = 0
|
|
|
98 |
with open(request_file, "r") as f:
|
99 |
request = json.load(f)
|
100 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
|
|
101 |
self.license = request.get("license", "?")
|
102 |
self.likes = request.get("likes", 0)
|
103 |
self.num_params = request.get("params", 0)
|
|
|
113 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
114 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
115 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
|
|
116 |
AutoEvalColumn.architecture.name: self.architecture,
|
117 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
118 |
AutoEvalColumn.revision.name: self.revision,
|
src/populate.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
|
4 |
import pandas as pd
|
5 |
|
6 |
-
from src.display.formatting import has_no_nan_values
|
7 |
-
from src.display.utils import AutoEvalColumn
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
@@ -20,39 +17,3 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
return raw_data, df
|
23 |
-
|
24 |
-
|
25 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
26 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
27 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
28 |
-
all_evals = []
|
29 |
-
|
30 |
-
for entry in entries:
|
31 |
-
if ".json" in entry:
|
32 |
-
file_path = os.path.join(save_path, entry)
|
33 |
-
with open(file_path) as fp:
|
34 |
-
data = json.load(fp)
|
35 |
-
|
36 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
37 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
38 |
-
|
39 |
-
all_evals.append(data)
|
40 |
-
elif ".md" not in entry:
|
41 |
-
# this is a folder
|
42 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
43 |
-
for sub_entry in sub_entries:
|
44 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
45 |
-
with open(file_path) as fp:
|
46 |
-
data = json.load(fp)
|
47 |
-
|
48 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
49 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
50 |
-
all_evals.append(data)
|
51 |
-
|
52 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
53 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
54 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
55 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
56 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
57 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
58 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
+
from src.display.formatting import has_no_nan_values
|
4 |
+
from src.display.utils import AutoEvalColumn
|
5 |
from src.leaderboard.read_evals import get_raw_eval_results
|
6 |
|
7 |
|
|
|
17 |
# filter out if any of the benchmarks have not been produced
|
18 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
19 |
return raw_data, df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/check_validity.py
CHANGED
@@ -1,99 +1,36 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from collections import defaultdict
|
5 |
-
from datetime import datetime, timedelta, timezone
|
6 |
-
|
7 |
-
import huggingface_hub
|
8 |
-
from huggingface_hub import ModelCard
|
9 |
-
from huggingface_hub.hf_api import ModelInfo
|
10 |
from transformers import AutoConfig
|
11 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
|
13 |
-
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
-
"""Checks if the model card and license exist and have been filled"""
|
15 |
-
try:
|
16 |
-
card = ModelCard.load(repo_id)
|
17 |
-
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
-
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
-
|
20 |
-
# Enforce license metadata
|
21 |
-
if card.data.license is None:
|
22 |
-
if not ("license_name" in card.data and "license_link" in card.data):
|
23 |
-
return False, (
|
24 |
-
"License not found. Please add a license to your model card using the `license` metadata or a"
|
25 |
-
" `license_name`/`license_link` pair."
|
26 |
-
)
|
27 |
-
|
28 |
-
# Enforce card content
|
29 |
-
if len(card.text) < 200:
|
30 |
-
return False, "Please add a description to your model card, it is too short."
|
31 |
-
|
32 |
-
return True, ""
|
33 |
|
34 |
-
def is_model_on_hub(
|
|
|
|
|
35 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
try:
|
37 |
-
config = AutoConfig.from_pretrained(
|
|
|
|
|
38 |
if test_tokenizer:
|
39 |
try:
|
40 |
-
tk = AutoTokenizer.from_pretrained(
|
|
|
|
|
41 |
except ValueError as e:
|
|
|
|
|
42 |
return (
|
43 |
False,
|
44 |
-
|
45 |
-
None
|
46 |
)
|
47 |
-
except Exception as e:
|
48 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
49 |
return True, None, config
|
50 |
|
51 |
except ValueError:
|
52 |
return (
|
53 |
False,
|
54 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
55 |
-
None
|
56 |
)
|
57 |
|
58 |
except Exception as e:
|
59 |
return False, "was not found on hub!", None
|
60 |
-
|
61 |
-
|
62 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
63 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
-
try:
|
65 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
-
except (AttributeError, TypeError):
|
67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
-
|
69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
-
model_size = size_factor * model_size
|
71 |
-
return model_size
|
72 |
-
|
73 |
-
def get_model_arch(model_info: ModelInfo):
|
74 |
-
"""Gets the model architecture from the configuration"""
|
75 |
-
return model_info.config.get("architectures", "Unknown")
|
76 |
-
|
77 |
-
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
78 |
-
"""Gather a list of already submitted models to avoid duplicates"""
|
79 |
-
depth = 1
|
80 |
-
file_names = []
|
81 |
-
users_to_submission_dates = defaultdict(list)
|
82 |
-
|
83 |
-
for root, _, files in os.walk(requested_models_dir):
|
84 |
-
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
85 |
-
if current_depth == depth:
|
86 |
-
for file in files:
|
87 |
-
if not file.endswith(".json"):
|
88 |
-
continue
|
89 |
-
with open(os.path.join(root, file), "r") as f:
|
90 |
-
info = json.load(f)
|
91 |
-
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
92 |
-
|
93 |
-
# Select organisation
|
94 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
95 |
-
continue
|
96 |
-
organisation, _ = info["model"].split("/")
|
97 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
98 |
-
|
99 |
-
return set(file_names), users_to_submission_dates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import AutoConfig
|
2 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
def is_model_on_hub(
|
6 |
+
model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False
|
7 |
+
) -> tuple[bool, str]:
|
8 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
9 |
try:
|
10 |
+
config = AutoConfig.from_pretrained(
|
11 |
+
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
|
12 |
+
)
|
13 |
if test_tokenizer:
|
14 |
try:
|
15 |
+
tk = AutoTokenizer.from_pretrained(
|
16 |
+
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
|
17 |
+
)
|
18 |
except ValueError as e:
|
19 |
+
return (False, f"uses a tokenizer which is not in a transformers release: {e}", None)
|
20 |
+
except Exception as e:
|
21 |
return (
|
22 |
False,
|
23 |
+
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
|
24 |
+
None,
|
25 |
)
|
|
|
|
|
26 |
return True, None, config
|
27 |
|
28 |
except ValueError:
|
29 |
return (
|
30 |
False,
|
31 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
32 |
+
None,
|
33 |
)
|
34 |
|
35 |
except Exception as e:
|
36 |
return False, "was not found on hub!", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/submit.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from datetime import datetime, timezone
|
4 |
-
|
5 |
-
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
-
from src.submission.check_validity import (
|
8 |
-
already_submitted_models,
|
9 |
-
check_model_card,
|
10 |
-
get_model_size,
|
11 |
-
is_model_on_hub,
|
12 |
-
)
|
13 |
-
|
14 |
-
REQUESTED_MODELS = None
|
15 |
-
USERS_TO_SUBMISSION_DATES = None
|
16 |
-
|
17 |
-
def add_new_eval(
|
18 |
-
model_api: str,
|
19 |
-
model: str,
|
20 |
-
base_model: str,
|
21 |
-
revision: str,
|
22 |
-
precision: str,
|
23 |
-
weight_type: str,
|
24 |
-
model_type: str,
|
25 |
-
):
|
26 |
-
global REQUESTED_MODELS
|
27 |
-
global USERS_TO_SUBMISSION_DATES
|
28 |
-
if not REQUESTED_MODELS:
|
29 |
-
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
30 |
-
|
31 |
-
user_name = ""
|
32 |
-
model_path = model
|
33 |
-
if "/" in model:
|
34 |
-
user_name = model.split("/")[0]
|
35 |
-
model_path = model.split("/")[1]
|
36 |
-
|
37 |
-
precision = precision.split(" ")[0]
|
38 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
39 |
-
|
40 |
-
if model_api not in ["hf", "openai-chat-completions", "anthropic-chat-completions"]:
|
41 |
-
return styled_error('Please select a model API from one of "hf", "openai-chat-completions" or "anthropic-chat-completions"')
|
42 |
-
|
43 |
-
if model_type is None or model_type == "":
|
44 |
-
return styled_error("Please select a model type.")
|
45 |
-
|
46 |
-
if model_api in ["openai-chat-completions", "anthropic-chat-completions"]:
|
47 |
-
# Don't need to check for model details for these APIs
|
48 |
-
print("Adding new eval for OpenAI/Anthropic model")
|
49 |
-
else:
|
50 |
-
# Does the model actually exist?
|
51 |
-
if revision == "":
|
52 |
-
revision = "main"
|
53 |
-
|
54 |
-
# Is the model on the hub?
|
55 |
-
if weight_type in ["Delta", "Adapter"]:
|
56 |
-
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
57 |
-
if not base_model_on_hub:
|
58 |
-
return styled_error(f'Base model "{base_model}" {error}')
|
59 |
-
|
60 |
-
if not weight_type == "Adapter":
|
61 |
-
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
62 |
-
if not model_on_hub:
|
63 |
-
return styled_error(f'Model "{model}" {error}')
|
64 |
-
|
65 |
-
# Is the model info correctly filled?
|
66 |
-
try:
|
67 |
-
model_info = API.model_info(repo_id=model, revision=revision)
|
68 |
-
except Exception:
|
69 |
-
return styled_error("Could not get your model information. Please fill it up properly.")
|
70 |
-
|
71 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
72 |
-
|
73 |
-
# Were the model card and license filled?
|
74 |
-
try:
|
75 |
-
license = model_info.cardData["license"]
|
76 |
-
except Exception:
|
77 |
-
return styled_error("Please select a license for your model")
|
78 |
-
|
79 |
-
modelcard_OK, error_msg = check_model_card(model)
|
80 |
-
if not modelcard_OK:
|
81 |
-
return styled_error(error_msg)
|
82 |
-
|
83 |
-
# Seems good, creating the eval
|
84 |
-
print("Adding new eval for HF model")
|
85 |
-
|
86 |
-
eval_entry = {
|
87 |
-
"model_api": model_api,
|
88 |
-
"model": model,
|
89 |
-
"base_model": base_model,
|
90 |
-
"revision": revision,
|
91 |
-
"precision": precision if model_api == "hf" else None,
|
92 |
-
"weight_type": weight_type,
|
93 |
-
"status": "PENDING",
|
94 |
-
"submitted_time": current_time,
|
95 |
-
"model_type": model_type,
|
96 |
-
"likes": model_info.likes if model_api == "hf" else None,
|
97 |
-
"params": model_size if model_api == "hf" else None,
|
98 |
-
"license": license if model_api == "hf" else None,
|
99 |
-
"private": False if model_api == "hf" else True,
|
100 |
-
}
|
101 |
-
|
102 |
-
# Check for duplicate submission
|
103 |
-
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
104 |
-
return styled_warning("This model has been already submitted.")
|
105 |
-
|
106 |
-
print("Creating eval file")
|
107 |
-
OUT_DIR = os.path.join(EVAL_REQUESTS_PATH, user_name)
|
108 |
-
os.makedirs(OUT_DIR, exist_ok=True)
|
109 |
-
out_path = os.path.join(OUT_DIR, f"{model_path}_eval_request_False_{precision}_{weight_type}.json")
|
110 |
-
|
111 |
-
with open(out_path, "w") as f:
|
112 |
-
f.write(json.dumps(eval_entry))
|
113 |
-
|
114 |
-
print("Uploading eval file")
|
115 |
-
API.upload_file(
|
116 |
-
path_or_fileobj=out_path,
|
117 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
118 |
-
repo_id=QUEUE_REPO,
|
119 |
-
repo_type="dataset",
|
120 |
-
commit_message=f"Add {model} to eval queue",
|
121 |
-
)
|
122 |
-
|
123 |
-
# Remove the local file
|
124 |
-
os.remove(out_path)
|
125 |
-
|
126 |
-
return styled_message(
|
127 |
-
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
128 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|