Upload utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import itertools
|
| 16 |
+
import json
|
| 17 |
+
import linecache
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import pickle
|
| 21 |
+
import socket
|
| 22 |
+
from logging import getLogger
|
| 23 |
+
from pathlib import Path
|
| 24 |
+
from typing import Callable, Dict, Iterable, List, Tuple, Union
|
| 25 |
+
|
| 26 |
+
import git
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
import torch.distributed as dist
|
| 30 |
+
from rouge_score import rouge_scorer, scoring
|
| 31 |
+
from sacrebleu import corpus_bleu
|
| 32 |
+
from torch import nn
|
| 33 |
+
from torch.utils.data import Dataset, Sampler
|
| 34 |
+
|
| 35 |
+
from sentence_splitter import add_newline_to_end_of_each_sentence
|
| 36 |
+
from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer, T5Tokenizer
|
| 37 |
+
from transformers.file_utils import cached_property
|
| 38 |
+
from transformers.models.bart.modeling_bart import shift_tokens_right
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
from fairseq.data.data_utils import batch_by_size
|
| 43 |
+
|
| 44 |
+
FAIRSEQ_AVAILABLE = True
|
| 45 |
+
except (ImportError, ModuleNotFoundError):
|
| 46 |
+
FAIRSEQ_AVAILABLE = False
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
|
| 50 |
+
"""From fairseq"""
|
| 51 |
+
if target.dim() == lprobs.dim() - 1:
|
| 52 |
+
target = target.unsqueeze(-1)
|
| 53 |
+
nll_loss = -lprobs.gather(dim=-1, index=target)
|
| 54 |
+
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
|
| 55 |
+
if ignore_index is not None:
|
| 56 |
+
pad_mask = target.eq(ignore_index)
|
| 57 |
+
nll_loss.masked_fill_(pad_mask, 0.0)
|
| 58 |
+
smooth_loss.masked_fill_(pad_mask, 0.0)
|
| 59 |
+
else:
|
| 60 |
+
nll_loss = nll_loss.squeeze(-1)
|
| 61 |
+
smooth_loss = smooth_loss.squeeze(-1)
|
| 62 |
+
|
| 63 |
+
nll_loss = nll_loss.sum() # mean()? Scared to break other math.
|
| 64 |
+
smooth_loss = smooth_loss.sum()
|
| 65 |
+
eps_i = epsilon / lprobs.size(-1)
|
| 66 |
+
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
|
| 67 |
+
return loss, nll_loss
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def lmap(f: Callable, x: Iterable) -> List:
|
| 71 |
+
"""list(map(f, x))"""
|
| 72 |
+
return list(map(f, x))
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
|
| 76 |
+
"""Uses sacrebleu's corpus_bleu implementation."""
|
| 77 |
+
return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def build_compute_metrics_fn(
|
| 81 |
+
task_name: str, tokenizer: PreTrainedTokenizer
|
| 82 |
+
) -> Callable[[EvalPrediction], Dict]:
|
| 83 |
+
def non_pad_len(tokens: np.ndarray) -> int:
|
| 84 |
+
return np.count_nonzero(tokens != tokenizer.pad_token_id)
|
| 85 |
+
|
| 86 |
+
def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]:
|
| 87 |
+
pred_ids = pred.predictions
|
| 88 |
+
label_ids = pred.label_ids
|
| 89 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
| 90 |
+
label_ids[label_ids == -100] = tokenizer.pad_token_id
|
| 91 |
+
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
|
| 92 |
+
pred_str = lmap(str.strip, pred_str)
|
| 93 |
+
label_str = lmap(str.strip, label_str)
|
| 94 |
+
return pred_str, label_str
|
| 95 |
+
|
| 96 |
+
def summarization_metrics(pred: EvalPrediction) -> Dict:
|
| 97 |
+
pred_str, label_str = decode_pred(pred)
|
| 98 |
+
rouge: Dict = calculate_rouge(pred_str, label_str)
|
| 99 |
+
summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
|
| 100 |
+
rouge.update({"gen_len": summ_len})
|
| 101 |
+
return rouge
|
| 102 |
+
|
| 103 |
+
def translation_metrics(pred: EvalPrediction) -> Dict:
|
| 104 |
+
pred_str, label_str = decode_pred(pred)
|
| 105 |
+
bleu: Dict = calculate_bleu(pred_str, label_str)
|
| 106 |
+
gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
|
| 107 |
+
bleu.update({"gen_len": gen_len})
|
| 108 |
+
return bleu
|
| 109 |
+
|
| 110 |
+
compute_metrics_fn = (
|
| 111 |
+
summarization_metrics if "summarization" in task_name else translation_metrics
|
| 112 |
+
)
|
| 113 |
+
return compute_metrics_fn
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def trim_batch(
|
| 117 |
+
input_ids,
|
| 118 |
+
pad_token_id,
|
| 119 |
+
attention_mask=None,
|
| 120 |
+
):
|
| 121 |
+
"""Remove columns that are populated exclusively by pad_token_id"""
|
| 122 |
+
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
|
| 123 |
+
if attention_mask is None:
|
| 124 |
+
return input_ids[:, keep_column_mask]
|
| 125 |
+
else:
|
| 126 |
+
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class AbstractSeq2SeqDataset(Dataset):
|
| 130 |
+
def __init__(
|
| 131 |
+
self,
|
| 132 |
+
tokenizer,
|
| 133 |
+
data_dir,
|
| 134 |
+
max_source_length,
|
| 135 |
+
max_target_length,
|
| 136 |
+
type_path="train",
|
| 137 |
+
n_obs=None,
|
| 138 |
+
prefix="",
|
| 139 |
+
**dataset_kwargs,
|
| 140 |
+
):
|
| 141 |
+
super().__init__()
|
| 142 |
+
self.src_file = Path(data_dir).joinpath(type_path + ".source")
|
| 143 |
+
self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
|
| 144 |
+
self.len_file = Path(data_dir).joinpath(type_path + ".len")
|
| 145 |
+
if os.path.exists(self.len_file):
|
| 146 |
+
self.src_lens = pickle_load(self.len_file)
|
| 147 |
+
self.used_char_len = False
|
| 148 |
+
else:
|
| 149 |
+
self.src_lens = self.get_char_lens(self.src_file)
|
| 150 |
+
self.used_char_len = True
|
| 151 |
+
self.max_source_length = max_source_length
|
| 152 |
+
self.max_target_length = max_target_length
|
| 153 |
+
assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
|
| 154 |
+
self.tokenizer = tokenizer
|
| 155 |
+
self.prefix = prefix if prefix is not None else ""
|
| 156 |
+
|
| 157 |
+
if n_obs is not None:
|
| 158 |
+
self.src_lens = self.src_lens[:n_obs]
|
| 159 |
+
self.pad_token_id = self.tokenizer.pad_token_id
|
| 160 |
+
self.dataset_kwargs = dataset_kwargs
|
| 161 |
+
dataset_kwargs.update(
|
| 162 |
+
{"add_prefix_space": True}
|
| 163 |
+
if isinstance(self.tokenizer, BartTokenizer)
|
| 164 |
+
else {}
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
def __len__(self):
|
| 168 |
+
return len(self.src_lens)
|
| 169 |
+
|
| 170 |
+
@staticmethod
|
| 171 |
+
def get_char_lens(data_file):
|
| 172 |
+
return [len(x) for x in Path(data_file).open().readlines()]
|
| 173 |
+
|
| 174 |
+
@cached_property
|
| 175 |
+
def tgt_lens(self):
|
| 176 |
+
"""Length in characters of target documents"""
|
| 177 |
+
return self.get_char_lens(self.tgt_file)
|
| 178 |
+
|
| 179 |
+
def make_sortish_sampler(
|
| 180 |
+
self, batch_size, distributed=False, shuffle=True, **kwargs
|
| 181 |
+
):
|
| 182 |
+
if distributed:
|
| 183 |
+
return DistributedSortishSampler(
|
| 184 |
+
self, batch_size, shuffle=shuffle, **kwargs
|
| 185 |
+
)
|
| 186 |
+
else:
|
| 187 |
+
return SortishSampler(self.src_lens, batch_size, shuffle=shuffle)
|
| 188 |
+
|
| 189 |
+
def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs):
|
| 190 |
+
assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`"
|
| 191 |
+
assert (
|
| 192 |
+
not self.used_char_len
|
| 193 |
+
), "You must call python make_len_file.py before calling make_dynamic_sampler"
|
| 194 |
+
sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False))
|
| 195 |
+
|
| 196 |
+
def num_tokens_in_example(i):
|
| 197 |
+
return min(self.src_lens[i], self.max_target_length)
|
| 198 |
+
|
| 199 |
+
# call fairseq cython function
|
| 200 |
+
batch_sampler: List[List[int]] = batch_by_size(
|
| 201 |
+
sorted_indices,
|
| 202 |
+
num_tokens_fn=num_tokens_in_example,
|
| 203 |
+
max_tokens=max_tokens_per_batch,
|
| 204 |
+
required_batch_size_multiple=64,
|
| 205 |
+
)
|
| 206 |
+
shuffled_batches = [
|
| 207 |
+
batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))
|
| 208 |
+
]
|
| 209 |
+
# move the largest batch to the front to OOM quickly (uses an approximation for padding)
|
| 210 |
+
approximate_toks_per_batch = [
|
| 211 |
+
max(self.src_lens[i] for i in batch) * len(batch)
|
| 212 |
+
for batch in shuffled_batches
|
| 213 |
+
]
|
| 214 |
+
largest_batch_idx = np.argmax(approximate_toks_per_batch)
|
| 215 |
+
shuffled_batches[0], shuffled_batches[largest_batch_idx] = (
|
| 216 |
+
shuffled_batches[largest_batch_idx],
|
| 217 |
+
shuffled_batches[0],
|
| 218 |
+
)
|
| 219 |
+
return shuffled_batches
|
| 220 |
+
|
| 221 |
+
def __getitem__(self, item):
|
| 222 |
+
raise NotImplementedError("You must implement this")
|
| 223 |
+
|
| 224 |
+
def collate_fn(self, batch):
|
| 225 |
+
raise NotImplementedError("You must implement this")
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
|
| 229 |
+
def __getitem__(self, index) -> Dict[str, torch.Tensor]:
|
| 230 |
+
"""Call tokenizer on src and tgt_lines"""
|
| 231 |
+
index = index + 1 # linecache starts at 1
|
| 232 |
+
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip(
|
| 233 |
+
"\n"
|
| 234 |
+
)
|
| 235 |
+
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
|
| 236 |
+
assert source_line, f"empty source line for index {index}"
|
| 237 |
+
assert tgt_line, f"empty tgt line for index {index}"
|
| 238 |
+
source_inputs = self.encode_line(
|
| 239 |
+
self.tokenizer, source_line, self.max_source_length
|
| 240 |
+
)
|
| 241 |
+
target_inputs = self.encode_line(
|
| 242 |
+
self.tokenizer, tgt_line, self.max_target_length
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
source_ids = source_inputs["input_ids"].squeeze()
|
| 246 |
+
target_ids = target_inputs["input_ids"].squeeze()
|
| 247 |
+
src_mask = source_inputs["attention_mask"].squeeze()
|
| 248 |
+
return {
|
| 249 |
+
"input_ids": source_ids,
|
| 250 |
+
"attention_mask": src_mask,
|
| 251 |
+
"labels": target_ids,
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
def encode_line(
|
| 255 |
+
self, tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"
|
| 256 |
+
):
|
| 257 |
+
"""Only used by LegacyDataset"""
|
| 258 |
+
return tokenizer(
|
| 259 |
+
[line],
|
| 260 |
+
max_length=max_length,
|
| 261 |
+
padding="max_length" if pad_to_max_length else None,
|
| 262 |
+
truncation=True,
|
| 263 |
+
return_tensors=return_tensors,
|
| 264 |
+
**self.dataset_kwargs,
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
|
| 268 |
+
input_ids = torch.stack([x["input_ids"] for x in batch])
|
| 269 |
+
masks = torch.stack([x["attention_mask"] for x in batch])
|
| 270 |
+
target_ids = torch.stack([x["labels"] for x in batch])
|
| 271 |
+
pad_token_id = self.pad_token_id
|
| 272 |
+
y = trim_batch(target_ids, pad_token_id)
|
| 273 |
+
source_ids, source_mask = trim_batch(
|
| 274 |
+
input_ids, pad_token_id, attention_mask=masks
|
| 275 |
+
)
|
| 276 |
+
batch = {
|
| 277 |
+
"input_ids": source_ids,
|
| 278 |
+
"attention_mask": source_mask,
|
| 279 |
+
"labels": y,
|
| 280 |
+
}
|
| 281 |
+
return batch
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
class Seq2SeqDataset(AbstractSeq2SeqDataset):
|
| 285 |
+
"""A dataset that calls prepare_seq2seq_batch."""
|
| 286 |
+
|
| 287 |
+
def __getitem__(self, index) -> Dict[str, str]:
|
| 288 |
+
index = index + 1 # linecache starts at 1
|
| 289 |
+
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip(
|
| 290 |
+
"\n"
|
| 291 |
+
)
|
| 292 |
+
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
|
| 293 |
+
assert source_line, f"empty source line for index {index}"
|
| 294 |
+
assert tgt_line, f"empty tgt line for index {index}"
|
| 295 |
+
return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1}
|
| 296 |
+
|
| 297 |
+
def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
|
| 298 |
+
"""Call prepare_seq2seq_batch."""
|
| 299 |
+
batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch(
|
| 300 |
+
[x["src_texts"] for x in batch],
|
| 301 |
+
tgt_texts=[x["tgt_texts"] for x in batch],
|
| 302 |
+
max_length=self.max_source_length,
|
| 303 |
+
max_target_length=self.max_target_length,
|
| 304 |
+
return_tensors="pt",
|
| 305 |
+
**self.dataset_kwargs,
|
| 306 |
+
).data
|
| 307 |
+
batch_encoding["ids"] = torch.tensor([x["id"] for x in batch])
|
| 308 |
+
return batch_encoding
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
class Seq2SeqDataCollator:
|
| 312 |
+
def __init__(
|
| 313 |
+
self, tokenizer, data_args, decoder_start_token_id, tpu_num_cores=None
|
| 314 |
+
):
|
| 315 |
+
self.tokenizer = tokenizer
|
| 316 |
+
self.pad_token_id = tokenizer.pad_token_id
|
| 317 |
+
self.decoder_start_token_id = decoder_start_token_id
|
| 318 |
+
assert (
|
| 319 |
+
self.pad_token_id is not None
|
| 320 |
+
), f"pad_token_id is not defined for ({self.tokenizer.__class__.__name__}), it must be defined."
|
| 321 |
+
self.data_args = data_args
|
| 322 |
+
self.tpu_num_cores = tpu_num_cores
|
| 323 |
+
self.dataset_kwargs = (
|
| 324 |
+
{"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
|
| 325 |
+
)
|
| 326 |
+
if data_args.src_lang is not None:
|
| 327 |
+
self.dataset_kwargs["src_lang"] = data_args.src_lang
|
| 328 |
+
if data_args.tgt_lang is not None:
|
| 329 |
+
self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang
|
| 330 |
+
|
| 331 |
+
def __call__(self, batch) -> Dict[str, torch.Tensor]:
|
| 332 |
+
if hasattr(self.tokenizer, "prepare_seq2seq_batch"):
|
| 333 |
+
batch = self._encode(batch)
|
| 334 |
+
input_ids, attention_mask, labels = (
|
| 335 |
+
batch["input_ids"],
|
| 336 |
+
batch["attention_mask"],
|
| 337 |
+
batch["labels"],
|
| 338 |
+
)
|
| 339 |
+
else:
|
| 340 |
+
input_ids = torch.stack([x["input_ids"] for x in batch])
|
| 341 |
+
attention_mask = torch.stack([x["attention_mask"] for x in batch])
|
| 342 |
+
labels = torch.stack([x["labels"] for x in batch])
|
| 343 |
+
|
| 344 |
+
labels = trim_batch(labels, self.pad_token_id)
|
| 345 |
+
input_ids, attention_mask = trim_batch(
|
| 346 |
+
input_ids, self.pad_token_id, attention_mask=attention_mask
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
if isinstance(self.tokenizer, T5Tokenizer):
|
| 350 |
+
decoder_input_ids = self._shift_right_t5(labels)
|
| 351 |
+
else:
|
| 352 |
+
decoder_input_ids = shift_tokens_right(
|
| 353 |
+
labels, self.pad_token_id, self.decoder_start_token_id
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
batch = {
|
| 357 |
+
"input_ids": input_ids,
|
| 358 |
+
"attention_mask": attention_mask,
|
| 359 |
+
"decoder_input_ids": decoder_input_ids,
|
| 360 |
+
"labels": labels,
|
| 361 |
+
}
|
| 362 |
+
return batch
|
| 363 |
+
|
| 364 |
+
def _shift_right_t5(self, input_ids):
|
| 365 |
+
# shift inputs to the right
|
| 366 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
| 367 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
| 368 |
+
shifted_input_ids[..., 0] = self.pad_token_id
|
| 369 |
+
return shifted_input_ids
|
| 370 |
+
|
| 371 |
+
def _encode(self, batch) -> Dict[str, torch.Tensor]:
|
| 372 |
+
batch_encoding = self.tokenizer.prepare_seq2seq_batch(
|
| 373 |
+
[x["src_texts"] for x in batch],
|
| 374 |
+
tgt_texts=[x["tgt_texts"] for x in batch],
|
| 375 |
+
max_length=self.data_args.max_source_length,
|
| 376 |
+
max_target_length=self.data_args.max_target_length,
|
| 377 |
+
padding="max_length"
|
| 378 |
+
if self.tpu_num_cores is not None
|
| 379 |
+
else "longest", # TPU hack
|
| 380 |
+
return_tensors="pt",
|
| 381 |
+
**self.dataset_kwargs,
|
| 382 |
+
)
|
| 383 |
+
return batch_encoding.data
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
class SortishSampler(Sampler):
|
| 387 |
+
"Go through the text data by order of src length with a bit of randomness. From fastai repo."
|
| 388 |
+
|
| 389 |
+
def __init__(self, data, batch_size, shuffle=True):
|
| 390 |
+
self.data, self.bs, self.shuffle = data, batch_size, shuffle
|
| 391 |
+
|
| 392 |
+
def __len__(self) -> int:
|
| 393 |
+
return len(self.data)
|
| 394 |
+
|
| 395 |
+
def __iter__(self):
|
| 396 |
+
return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle))
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array:
|
| 400 |
+
"Go through the text data by order of src length with a bit of randomness. From fastai repo."
|
| 401 |
+
if not shuffle:
|
| 402 |
+
return np.argsort(np.array(data) * -1)
|
| 403 |
+
|
| 404 |
+
def key_fn(i):
|
| 405 |
+
return data[i]
|
| 406 |
+
|
| 407 |
+
idxs = np.random.permutation(len(data))
|
| 408 |
+
sz = bs * 50
|
| 409 |
+
ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
|
| 410 |
+
sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx])
|
| 411 |
+
sz = bs
|
| 412 |
+
ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
|
| 413 |
+
max_ck = np.argmax(
|
| 414 |
+
[key_fn(ck[0]) for ck in ck_idx]
|
| 415 |
+
) # find the chunk with the largest key,
|
| 416 |
+
ck_idx[0], ck_idx[max_ck] = (
|
| 417 |
+
ck_idx[max_ck],
|
| 418 |
+
ck_idx[0],
|
| 419 |
+
) # then make sure it goes first.
|
| 420 |
+
sort_idx = (
|
| 421 |
+
np.concatenate(np.random.permutation(ck_idx[1:]))
|
| 422 |
+
if len(ck_idx) > 1
|
| 423 |
+
else np.array([], dtype=np.int)
|
| 424 |
+
)
|
| 425 |
+
sort_idx = np.concatenate((ck_idx[0], sort_idx))
|
| 426 |
+
return sort_idx
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
class DistributedSortishSampler(Sampler):
|
| 430 |
+
"""Copied from torch DistributedSampler"""
|
| 431 |
+
|
| 432 |
+
def __init__(
|
| 433 |
+
self,
|
| 434 |
+
dataset,
|
| 435 |
+
batch_size,
|
| 436 |
+
num_replicas=None,
|
| 437 |
+
rank=None,
|
| 438 |
+
add_extra_examples=True,
|
| 439 |
+
shuffle=True,
|
| 440 |
+
):
|
| 441 |
+
if num_replicas is None:
|
| 442 |
+
if not dist.is_available():
|
| 443 |
+
raise RuntimeError("Requires distributed package to be available")
|
| 444 |
+
num_replicas = dist.get_world_size()
|
| 445 |
+
if rank is None:
|
| 446 |
+
if not dist.is_available():
|
| 447 |
+
raise RuntimeError("Requires distributed package to be available")
|
| 448 |
+
rank = dist.get_rank()
|
| 449 |
+
self.dataset = dataset
|
| 450 |
+
self.num_replicas = num_replicas
|
| 451 |
+
self.rank = rank
|
| 452 |
+
self.epoch = 0
|
| 453 |
+
if add_extra_examples:
|
| 454 |
+
self.num_samples = int(
|
| 455 |
+
math.ceil(len(self.dataset) * 1.0 / self.num_replicas)
|
| 456 |
+
)
|
| 457 |
+
self.total_size = self.num_samples * self.num_replicas
|
| 458 |
+
else:
|
| 459 |
+
self.total_size = len(dataset)
|
| 460 |
+
self.num_samples = len(self.available_indices)
|
| 461 |
+
self.batch_size = batch_size
|
| 462 |
+
self.add_extra_examples = add_extra_examples
|
| 463 |
+
self.shuffle = shuffle
|
| 464 |
+
|
| 465 |
+
def __iter__(self) -> Iterable:
|
| 466 |
+
g = torch.Generator()
|
| 467 |
+
g.manual_seed(self.epoch)
|
| 468 |
+
|
| 469 |
+
sortish_data = [self.dataset.src_lens[i] for i in self.available_indices]
|
| 470 |
+
sortish_indices = sortish_sampler_indices(
|
| 471 |
+
sortish_data, self.batch_size, shuffle=self.shuffle
|
| 472 |
+
)
|
| 473 |
+
indices = [self.available_indices[i] for i in sortish_indices]
|
| 474 |
+
assert len(indices) == self.num_samples
|
| 475 |
+
return iter(indices)
|
| 476 |
+
|
| 477 |
+
@cached_property
|
| 478 |
+
def available_indices(self) -> np.array:
|
| 479 |
+
indices = list(range(len(self.dataset)))
|
| 480 |
+
# add extra samples to make it evenly divisible
|
| 481 |
+
indices += indices[: (self.total_size - len(indices))]
|
| 482 |
+
assert len(indices) == self.total_size
|
| 483 |
+
# subsample
|
| 484 |
+
available_indices = indices[self.rank : self.total_size : self.num_replicas]
|
| 485 |
+
return available_indices
|
| 486 |
+
|
| 487 |
+
def __len__(self):
|
| 488 |
+
return self.num_samples
|
| 489 |
+
|
| 490 |
+
def set_epoch(self, epoch):
|
| 491 |
+
self.epoch = epoch
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
logger = getLogger(__name__)
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
def use_task_specific_params(model, task):
|
| 498 |
+
"""Update config with summarization specific params."""
|
| 499 |
+
task_specific_params = model.config.task_specific_params
|
| 500 |
+
|
| 501 |
+
if task_specific_params is not None:
|
| 502 |
+
pars = task_specific_params.get(task, {})
|
| 503 |
+
logger.info(
|
| 504 |
+
f"setting model.config to task specific params for {task}:\n {pars}"
|
| 505 |
+
)
|
| 506 |
+
logger.info("note: command line args may override some of these")
|
| 507 |
+
model.config.update(pars)
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def pickle_load(path):
|
| 511 |
+
"""pickle.load(path)"""
|
| 512 |
+
with open(path, "rb") as f:
|
| 513 |
+
return pickle.load(f)
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
def pickle_save(obj, path):
|
| 517 |
+
"""pickle.dump(obj, path)"""
|
| 518 |
+
with open(path, "wb") as f:
|
| 519 |
+
return pickle.dump(obj, f)
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
def flatten_list(summary_ids: List[List]):
|
| 523 |
+
return [x for x in itertools.chain.from_iterable(summary_ids)]
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def save_git_info(folder_path: str) -> None:
|
| 527 |
+
"""Save git information to output_dir/git_log.json"""
|
| 528 |
+
repo_infos = get_git_info()
|
| 529 |
+
save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
def save_json(content, path, indent=4, **json_dump_kwargs):
|
| 533 |
+
with open(path, "w") as f:
|
| 534 |
+
json.dump(content, f, indent=indent, sort_keys=True, **json_dump_kwargs)
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
def load_json(path):
|
| 538 |
+
with open(path) as f:
|
| 539 |
+
return json.load(f)
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
def get_git_info():
|
| 543 |
+
try:
|
| 544 |
+
repo = git.Repo(search_parent_directories=True)
|
| 545 |
+
repo_infos = {
|
| 546 |
+
"repo_id": str(repo),
|
| 547 |
+
"repo_sha": str(repo.head.object.hexsha),
|
| 548 |
+
"repo_branch": str(repo.active_branch),
|
| 549 |
+
"hostname": str(socket.gethostname()),
|
| 550 |
+
}
|
| 551 |
+
return repo_infos
|
| 552 |
+
except TypeError:
|
| 553 |
+
return {
|
| 554 |
+
"repo_id": None,
|
| 555 |
+
"repo_sha": None,
|
| 556 |
+
"repo_branch": None,
|
| 557 |
+
"hostname": None,
|
| 558 |
+
}
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
def extract_rouge_mid_statistics(dct):
|
| 565 |
+
new_dict = {}
|
| 566 |
+
for k1, v1 in dct.items():
|
| 567 |
+
mid = v1.mid
|
| 568 |
+
new_dict[k1] = {
|
| 569 |
+
stat: round(getattr(mid, stat), 4)
|
| 570 |
+
for stat in ["precision", "recall", "fmeasure"]
|
| 571 |
+
}
|
| 572 |
+
return new_dict
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
def calculate_rouge(
|
| 576 |
+
pred_lns: List[str],
|
| 577 |
+
tgt_lns: List[str],
|
| 578 |
+
use_stemmer=True,
|
| 579 |
+
rouge_keys=ROUGE_KEYS,
|
| 580 |
+
return_precision_and_recall=False,
|
| 581 |
+
bootstrap_aggregation=True,
|
| 582 |
+
newline_sep=True,
|
| 583 |
+
) -> Dict:
|
| 584 |
+
"""Calculate rouge using rouge_scorer package.
|
| 585 |
+
|
| 586 |
+
Args:
|
| 587 |
+
pred_lns: list of summaries generated by model
|
| 588 |
+
tgt_lns: list of groundtruth summaries (e.g. contents of val.target)
|
| 589 |
+
use_stemmer: Bool indicating whether Porter stemmer should be used to
|
| 590 |
+
strip word suffixes to improve matching.
|
| 591 |
+
rouge_keys: which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum
|
| 592 |
+
return_precision_and_recall: (False) whether to also return precision and recall.
|
| 593 |
+
bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False
|
| 594 |
+
this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]``
|
| 595 |
+
newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL
|
| 596 |
+
on multi sentence summaries (CNN/DM dataset).
|
| 597 |
+
|
| 598 |
+
Returns:
|
| 599 |
+
Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys
|
| 600 |
+
|
| 601 |
+
"""
|
| 602 |
+
scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer)
|
| 603 |
+
aggregator = scoring.BootstrapAggregator()
|
| 604 |
+
for pred, tgt in zip(tgt_lns, pred_lns):
|
| 605 |
+
# rougeLsum expects "\n" separated sentences within a summary
|
| 606 |
+
if newline_sep:
|
| 607 |
+
pred = add_newline_to_end_of_each_sentence(pred)
|
| 608 |
+
tgt = add_newline_to_end_of_each_sentence(tgt)
|
| 609 |
+
scores = scorer.score(pred, tgt)
|
| 610 |
+
aggregator.add_scores(scores)
|
| 611 |
+
|
| 612 |
+
if bootstrap_aggregation:
|
| 613 |
+
result = aggregator.aggregate()
|
| 614 |
+
if return_precision_and_recall:
|
| 615 |
+
return extract_rouge_mid_statistics(result) # here we return dict
|
| 616 |
+
else:
|
| 617 |
+
return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}
|
| 618 |
+
|
| 619 |
+
else:
|
| 620 |
+
return aggregator._scores # here we return defaultdict(list)
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
# Utilities for freezing parameters and checking whether they are frozen
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
def freeze_params(model: nn.Module):
|
| 627 |
+
"""Set requires_grad=False for each of model.parameters()"""
|
| 628 |
+
for par in model.parameters():
|
| 629 |
+
par.requires_grad = False
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
def freeze_embeds(model):
|
| 633 |
+
"""Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
|
| 634 |
+
model_type = model.config.model_type
|
| 635 |
+
|
| 636 |
+
if model_type in ["t5", "mt5"]:
|
| 637 |
+
freeze_params(model.shared)
|
| 638 |
+
for d in [model.encoder, model.decoder]:
|
| 639 |
+
freeze_params(d.embed_tokens)
|
| 640 |
+
elif model_type == "fsmt":
|
| 641 |
+
for d in [model.model.encoder, model.model.decoder]:
|
| 642 |
+
freeze_params(d.embed_positions)
|
| 643 |
+
freeze_params(d.embed_tokens)
|
| 644 |
+
else:
|
| 645 |
+
freeze_params(model.model.shared)
|
| 646 |
+
for d in [model.model.encoder, model.model.decoder]:
|
| 647 |
+
freeze_params(d.embed_positions)
|
| 648 |
+
freeze_params(d.embed_tokens)
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
def grad_status(model: nn.Module) -> Iterable:
|
| 652 |
+
return (par.requires_grad for par in model.parameters())
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
def any_requires_grad(model: nn.Module) -> bool:
|
| 656 |
+
return any(grad_status(model))
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
def assert_all_frozen(model):
|
| 660 |
+
model_grads: List[bool] = list(grad_status(model))
|
| 661 |
+
n_require_grad = sum(lmap(int, model_grads))
|
| 662 |
+
npars = len(model_grads)
|
| 663 |
+
assert not any(
|
| 664 |
+
model_grads
|
| 665 |
+
), f"{n_require_grad/npars:.1%} of {npars} weights require grad"
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
def assert_not_all_frozen(model):
|
| 669 |
+
model_grads: List[bool] = list(grad_status(model))
|
| 670 |
+
npars = len(model_grads)
|
| 671 |
+
assert any(model_grads), f"none of {npars} weights require grad"
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
def parse_numeric_n_bool_cl_kwargs(
|
| 675 |
+
unparsed_args: List[str],
|
| 676 |
+
) -> Dict[str, Union[int, float, bool]]:
|
| 677 |
+
"""
|
| 678 |
+
Parse an argv list of unspecified command line args to a dict.
|
| 679 |
+
Assumes all values are either numeric or boolean in the form of true/false.
|
| 680 |
+
"""
|
| 681 |
+
result = {}
|
| 682 |
+
assert (
|
| 683 |
+
len(unparsed_args) % 2 == 0
|
| 684 |
+
), f"got odd number of unparsed args: {unparsed_args}"
|
| 685 |
+
num_pairs = len(unparsed_args) // 2
|
| 686 |
+
for pair_num in range(num_pairs):
|
| 687 |
+
i = 2 * pair_num
|
| 688 |
+
assert unparsed_args[i].startswith("--")
|
| 689 |
+
if unparsed_args[i + 1].lower() == "true":
|
| 690 |
+
value = True
|
| 691 |
+
elif unparsed_args[i + 1].lower() == "false":
|
| 692 |
+
value = False
|
| 693 |
+
else:
|
| 694 |
+
try:
|
| 695 |
+
value = int(unparsed_args[i + 1])
|
| 696 |
+
except ValueError:
|
| 697 |
+
value = float(
|
| 698 |
+
unparsed_args[i + 1]
|
| 699 |
+
) # this can raise another informative ValueError
|
| 700 |
+
|
| 701 |
+
result[unparsed_args[i][2:]] = value
|
| 702 |
+
return result
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
def write_txt_file(ordered_tgt, path):
|
| 706 |
+
f = Path(path).open("w")
|
| 707 |
+
for ln in ordered_tgt:
|
| 708 |
+
f.write(ln + "\n")
|
| 709 |
+
f.flush()
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
def chunks(lst, n):
|
| 713 |
+
"""Yield successive n-sized chunks from lst."""
|
| 714 |
+
for i in range(0, len(lst), n):
|
| 715 |
+
yield lst[i : i + n]
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
def check_output_dir(args, expected_items=0):
|
| 719 |
+
"""
|
| 720 |
+
Checks whether to bail out if output_dir already exists and has more than expected_items in it
|
| 721 |
+
|
| 722 |
+
`args`: needs to have the following attributes of `args`:
|
| 723 |
+
- output_dir
|
| 724 |
+
- do_train
|
| 725 |
+
- overwrite_output_dir
|
| 726 |
+
|
| 727 |
+
`expected_items`: normally 0 (default) - i.e. empty dir, but in some cases a few files are expected (e.g. recovery from OOM)
|
| 728 |
+
"""
|
| 729 |
+
if (
|
| 730 |
+
os.path.exists(args.output_dir)
|
| 731 |
+
and len(os.listdir(args.output_dir)) > expected_items
|
| 732 |
+
and args.do_train
|
| 733 |
+
and not args.overwrite_output_dir
|
| 734 |
+
):
|
| 735 |
+
raise ValueError(
|
| 736 |
+
f"Output directory ({args.output_dir}) already exists and "
|
| 737 |
+
f"has {len(os.listdir(args.output_dir))} items in it (expected {expected_items} items). "
|
| 738 |
+
"Use --overwrite_output_dir to overcome."
|
| 739 |
+
)
|