Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 18,640 Bytes
			
			| db6a3b7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | import torch
import torch.nn as nn
import torch.nn.functional as F
DEFAULT_TRIVEC_CONFIG = {
    'dim': 8,
    'rank': 8,
}
DEFAULT_VOXEL_CONFIG = {
    'solid': False,
}
DEFAULT_DECOPOLY_CONFIG = {
    'degree': 8,
    'rank': 16,
}
class DfsOctree:
    """
    Sparse Voxel Octree (SVO) implementation for PyTorch.
    Using Depth-First Search (DFS) order to store the octree.
    DFS order suits rendering and ray tracing.
    The structure and data are separatedly stored.
    Structure is stored as a continuous array, each element is a 3*32 bits descriptor.
    |-----------------------------------------|
    |      0:3 bits      |      4:31 bits     |
    |      leaf num      |       unused       |
    |-----------------------------------------|
    |               0:31  bits                |
    |                child ptr                |
    |-----------------------------------------|
    |               0:31  bits                |
    |                data ptr                 |
    |-----------------------------------------|
    Each element represents a non-leaf node in the octree.
    The valid mask is used to indicate whether the children are valid.
    The leaf mask is used to indicate whether the children are leaf nodes.
    The child ptr is used to point to the first non-leaf child. Non-leaf children descriptors are stored continuously from the child ptr.
    The data ptr is used to point to the data of leaf children. Leaf children data are stored continuously from the data ptr.
    There are also auxiliary arrays to store the additional structural information to facilitate parallel processing.
      - Position: the position of the octree nodes.
      - Depth: the depth of the octree nodes.
    Args:
        depth (int): the depth of the octree.
    """
    def __init__(
            self,
            depth,
            aabb=[0,0,0,1,1,1],
            sh_degree=2,
            primitive='voxel',
            primitive_config={},
            device='cuda',
        ):
        self.max_depth = depth
        self.aabb = torch.tensor(aabb, dtype=torch.float32, device=device)
        self.device = device
        self.sh_degree = sh_degree
        self.active_sh_degree = sh_degree
        self.primitive = primitive
        self.primitive_config = primitive_config
        self.structure = torch.tensor([[8, 1, 0]], dtype=torch.int32, device=self.device)
        self.position = torch.zeros((8, 3), dtype=torch.float32, device=self.device)
        self.depth = torch.zeros((8, 1), dtype=torch.uint8, device=self.device)
        self.position[:, 0] = torch.tensor([0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75], device=self.device)
        self.position[:, 1] = torch.tensor([0.25, 0.25, 0.75, 0.75, 0.25, 0.25, 0.75, 0.75], device=self.device)
        self.position[:, 2] = torch.tensor([0.25, 0.25, 0.25, 0.25, 0.75, 0.75, 0.75, 0.75], device=self.device)
        self.depth[:, 0] = 1
        self.data = ['position', 'depth']
        self.param_names = []
        if primitive == 'voxel':
            self.features_dc = torch.zeros((8, 1, 3), dtype=torch.float32, device=self.device)
            self.features_ac = torch.zeros((8, (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device)
            self.data += ['features_dc', 'features_ac']
            self.param_names += ['features_dc', 'features_ac']
            if not primitive_config.get('solid', False):
                self.density = torch.zeros((8, 1), dtype=torch.float32, device=self.device)
                self.data.append('density')
                self.param_names.append('density')
        elif primitive == 'gaussian':
            self.features_dc = torch.zeros((8, 1, 3), dtype=torch.float32, device=self.device)
            self.features_ac = torch.zeros((8, (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device)
            self.opacity = torch.zeros((8, 1), dtype=torch.float32, device=self.device)
            self.data += ['features_dc', 'features_ac', 'opacity']
            self.param_names += ['features_dc', 'features_ac', 'opacity']
        elif primitive == 'trivec':
            self.trivec = torch.zeros((8, primitive_config['rank'], 3, primitive_config['dim']), dtype=torch.float32, device=self.device)
            self.density = torch.zeros((8, primitive_config['rank']), dtype=torch.float32, device=self.device)
            self.features_dc = torch.zeros((8, primitive_config['rank'], 1, 3), dtype=torch.float32, device=self.device)
            self.features_ac = torch.zeros((8, primitive_config['rank'], (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device)
            self.density_shift = 0
            self.data += ['trivec', 'density', 'features_dc', 'features_ac']
            self.param_names += ['trivec', 'density', 'features_dc', 'features_ac']
        elif primitive == 'decoupoly':
            self.decoupoly_V = torch.zeros((8, primitive_config['rank'], 3), dtype=torch.float32, device=self.device)
            self.decoupoly_g = torch.zeros((8, primitive_config['rank'], primitive_config['degree']), dtype=torch.float32, device=self.device)
            self.density = torch.zeros((8, primitive_config['rank']), dtype=torch.float32, device=self.device)
            self.features_dc = torch.zeros((8, primitive_config['rank'], 1, 3), dtype=torch.float32, device=self.device)
            self.features_ac = torch.zeros((8, primitive_config['rank'], (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device)
            self.density_shift = 0
            self.data += ['decoupoly_V', 'decoupoly_g', 'density', 'features_dc', 'features_ac']
            self.param_names += ['decoupoly_V', 'decoupoly_g', 'density', 'features_dc', 'features_ac']
        self.setup_functions()
    def setup_functions(self):
        self.density_activation = (lambda x: torch.exp(x - 2)) if self.primitive != 'trivec' else (lambda x: x)
        self.opacity_activation = lambda x: torch.sigmoid(x - 6)
        self.inverse_opacity_activation = lambda x: torch.log(x / (1 - x)) + 6
        self.color_activation = lambda x: torch.sigmoid(x)
    @property
    def num_non_leaf_nodes(self):
        return self.structure.shape[0]
    
    @property
    def num_leaf_nodes(self):
        return self.depth.shape[0]
    @property
    def cur_depth(self):
        return self.depth.max().item()
    
    @property
    def occupancy(self):
        return self.num_leaf_nodes / 8 ** self.cur_depth
    
    @property
    def get_xyz(self):
        return self.position
    @property
    def get_depth(self):
        return self.depth
    @property
    def get_density(self):
        if self.primitive == 'voxel' and self.voxel_config['solid']:
            return torch.full((self.position.shape[0], 1), 1000, dtype=torch.float32, device=self.device)
        return self.density_activation(self.density)
    
    @property
    def get_opacity(self):
        return self.opacity_activation(self.density)
    @property
    def get_trivec(self):
        return self.trivec
    @property
    def get_decoupoly(self):
        return F.normalize(self.decoupoly_V, dim=-1), self.decoupoly_g
    @property
    def get_color(self):
        return self.color_activation(self.colors)
    @property
    def get_features(self):
        if self.sh_degree == 0:
            return self.features_dc
        return torch.cat([self.features_dc, self.features_ac], dim=-2)
    def state_dict(self):
        ret = {'structure': self.structure, 'position': self.position, 'depth': self.depth, 'sh_degree': self.sh_degree, 'active_sh_degree': self.active_sh_degree, 'trivec_config': self.trivec_config, 'voxel_config': self.voxel_config, 'primitive': self.primitive}
        if hasattr(self, 'density_shift'):
            ret['density_shift'] = self.density_shift
        for data in set(self.data + self.param_names):
            if not isinstance(getattr(self, data), nn.Module):
                ret[data] = getattr(self, data)
            else:
                ret[data] = getattr(self, data).state_dict()
        return ret
    def load_state_dict(self, state_dict):
        keys = list(set(self.data + self.param_names + list(state_dict.keys()) + ['structure', 'position', 'depth']))
        for key in keys:
            if key not in state_dict:
                print(f"Warning: key {key} not found in the state_dict.")
                continue
            try:
                if not isinstance(getattr(self, key), nn.Module):
                    setattr(self, key, state_dict[key])
                else:
                    getattr(self, key).load_state_dict(state_dict[key])
            except Exception as e:
                print(e)
                raise ValueError(f"Error loading key {key}.")
    def gather_from_leaf_children(self, data):
        """
        Gather the data from the leaf children.
        Args:
            data (torch.Tensor): the data to gather. The first dimension should be the number of leaf nodes.
        """
        leaf_cnt = self.structure[:, 0]
        leaf_cnt_masks = [leaf_cnt == i for i in range(1, 9)]
        ret = torch.zeros((self.num_non_leaf_nodes,), dtype=data.dtype, device=self.device)
        for i in range(8):
            if leaf_cnt_masks[i].sum() == 0:
                continue
            start = self.structure[leaf_cnt_masks[i], 2]
            for j in range(i+1):
                ret[leaf_cnt_masks[i]] += data[start + j]
        return ret
    def gather_from_non_leaf_children(self, data):
        """
        Gather the data from the non-leaf children.
        Args:
            data (torch.Tensor): the data to gather. The first dimension should be the number of leaf nodes.
        """
        non_leaf_cnt = 8 - self.structure[:, 0]
        non_leaf_cnt_masks = [non_leaf_cnt == i for i in range(1, 9)]
        ret = torch.zeros_like(data, device=self.device)
        for i in range(8):
            if non_leaf_cnt_masks[i].sum() == 0:
                continue
            start = self.structure[non_leaf_cnt_masks[i], 1]
            for j in range(i+1):
                ret[non_leaf_cnt_masks[i]] += data[start + j]
        return ret
    def structure_control(self, mask):
        """
        Control the structure of the octree.
        Args:
            mask (torch.Tensor): the mask to control the structure. 1 for subdivide, -1 for merge, 0 for keep.
        """
        # Dont subdivide when the depth is the maximum.
        mask[self.depth.squeeze() == self.max_depth] = torch.clamp_max(mask[self.depth.squeeze() == self.max_depth], 0)
        # Dont merge when the depth is the minimum.
        mask[self.depth.squeeze() == 1] = torch.clamp_min(mask[self.depth.squeeze() == 1], 0)
        # Gather control mask
        structre_ctrl = self.gather_from_leaf_children(mask)
        structre_ctrl[structre_ctrl==-8] = -1
        new_leaf_num = self.structure[:, 0].clone()
        # Modify the leaf num.
        structre_valid = structre_ctrl >= 0
        new_leaf_num[structre_valid] -= structre_ctrl[structre_valid]                               # Add the new nodes.
        structre_delete = structre_ctrl < 0
        merged_nodes = self.gather_from_non_leaf_children(structre_delete.int())
        new_leaf_num += merged_nodes                                                                # Delete the merged nodes.
        # Update the structure array to allocate new nodes.
        mem_offset = torch.zeros((self.num_non_leaf_nodes + 1,), dtype=torch.int32, device=self.device)
        mem_offset.index_add_(0, self.structure[structre_valid, 1], structre_ctrl[structre_valid])  # Add the new nodes.
        mem_offset[:-1] -= structre_delete.int()                                                    # Delete the merged nodes.
        new_structre_idx = torch.arange(0, self.num_non_leaf_nodes + 1, dtype=torch.int32, device=self.device) + mem_offset.cumsum(0)
        new_structure_length = new_structre_idx[-1].item()
        new_structre_idx = new_structre_idx[:-1]
        new_structure = torch.empty((new_structure_length, 3), dtype=torch.int32, device=self.device)
        new_structure[new_structre_idx[structre_valid], 0] = new_leaf_num[structre_valid]
        # Initialize the new nodes.
        new_node_mask = torch.ones((new_structure_length,), dtype=torch.bool, device=self.device)
        new_node_mask[new_structre_idx[structre_valid]] = False
        new_structure[new_node_mask, 0] = 8                                                         # Initialize to all leaf nodes.
        new_node_num = new_node_mask.sum().item()
        # Rebuild child ptr.
        non_leaf_cnt = 8 - new_structure[:, 0]
        new_child_ptr = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), non_leaf_cnt.cumsum(0)[:-1]])
        new_structure[:, 1] = new_child_ptr + 1
        # Rebuild data ptr with old data.
        leaf_cnt = torch.zeros((new_structure_length,), dtype=torch.int32, device=self.device)
        leaf_cnt.index_add_(0, new_structre_idx, self.structure[:, 0])
        old_data_ptr = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), leaf_cnt.cumsum(0)[:-1]])
        # Update the data array
        subdivide_mask = mask == 1
        merge_mask = mask == -1
        data_valid = ~(subdivide_mask | merge_mask)
        mem_offset = torch.zeros((self.num_leaf_nodes + 1,), dtype=torch.int32, device=self.device)
        mem_offset.index_add_(0, old_data_ptr[new_node_mask], torch.full((new_node_num,), 8, dtype=torch.int32, device=self.device))    # Add data array for new nodes
        mem_offset[:-1] -= subdivide_mask.int()                                                                                         # Delete data elements for subdivide nodes
        mem_offset[:-1] -= merge_mask.int()                                                                                             # Delete data elements for merge nodes
        mem_offset.index_add_(0, self.structure[structre_valid, 2], merged_nodes[structre_valid])                                       # Add data elements for merge nodes
        new_data_idx = torch.arange(0, self.num_leaf_nodes + 1, dtype=torch.int32, device=self.device) + mem_offset.cumsum(0)
        new_data_length = new_data_idx[-1].item()
        new_data_idx = new_data_idx[:-1]
        new_data = {data: torch.empty((new_data_length,) + getattr(self, data).shape[1:], dtype=getattr(self, data).dtype, device=self.device) for data in self.data}
        for data in self.data:
            new_data[data][new_data_idx[data_valid]] = getattr(self, data)[data_valid]
        # Rebuild data ptr
        leaf_cnt = new_structure[:, 0]
        new_data_ptr = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), leaf_cnt.cumsum(0)[:-1]])
        new_structure[:, 2] = new_data_ptr
        # Initialize the new data array
        ## For subdivide nodes
        if subdivide_mask.sum() > 0:
            subdivide_data_ptr = new_structure[new_node_mask, 2]
            for data in self.data:
                for i in range(8):
                    if data == 'position':
                        offset = torch.tensor([i // 4, (i // 2) % 2, i % 2], dtype=torch.float32, device=self.device) - 0.5
                        scale = 2 ** (-1.0 - self.depth[subdivide_mask])
                        new_data['position'][subdivide_data_ptr + i] = self.position[subdivide_mask] + offset * scale
                    elif data == 'depth':
                        new_data['depth'][subdivide_data_ptr + i] = self.depth[subdivide_mask] + 1
                    elif data == 'opacity':
                        new_data['opacity'][subdivide_data_ptr + i] = self.inverse_opacity_activation(torch.sqrt(self.opacity_activation(self.opacity[subdivide_mask])))
                    elif data == 'trivec':
                        offset = torch.tensor([i // 4, (i // 2) % 2, i % 2], dtype=torch.float32, device=self.device) * 0.5
                        coord = (torch.linspace(0, 0.5, self.trivec.shape[-1], dtype=torch.float32, device=self.device)[None] + offset[:, None]).reshape(1, 3, self.trivec.shape[-1], 1)
                        axis = torch.linspace(0, 1, 3, dtype=torch.float32, device=self.device).reshape(1, 3, 1, 1).repeat(1, 1, self.trivec.shape[-1], 1)
                        coord = torch.stack([coord, axis], dim=3).reshape(1, 3, self.trivec.shape[-1], 2).expand(self.trivec[subdivide_mask].shape[0], -1, -1, -1) * 2 - 1
                        new_data['trivec'][subdivide_data_ptr + i] = F.grid_sample(self.trivec[subdivide_mask], coord, align_corners=True)
                    else:
                        new_data[data][subdivide_data_ptr + i] = getattr(self, data)[subdivide_mask]
        ## For merge nodes
        if merge_mask.sum() > 0:
            merge_data_ptr = torch.empty((merged_nodes.sum().item(),), dtype=torch.int32, device=self.device)
            merge_nodes_cumsum = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), merged_nodes.cumsum(0)[:-1]])
            for i in range(8):
                merge_data_ptr[merge_nodes_cumsum[merged_nodes > i] + i] = new_structure[new_structre_idx[merged_nodes > i], 2] + i
            old_merge_data_ptr = self.structure[structre_delete, 2]
            for data in self.data:
                if data == 'position':
                    scale = 2 ** (1.0 - self.depth[old_merge_data_ptr])
                    new_data['position'][merge_data_ptr] = ((self.position[old_merge_data_ptr] + 0.5) / scale).floor() * scale + 0.5 * scale - 0.5
                elif data == 'depth':
                    new_data['depth'][merge_data_ptr] = self.depth[old_merge_data_ptr] - 1
                elif data == 'opacity':
                    new_data['opacity'][subdivide_data_ptr + i] = self.inverse_opacity_activation(self.opacity_activation(self.opacity[subdivide_mask])**2)
                elif data == 'trivec':
                    new_data['trivec'][merge_data_ptr] = self.trivec[old_merge_data_ptr]
                else:
                    new_data[data][merge_data_ptr] = getattr(self, data)[old_merge_data_ptr]
        # Update the structure and data array
        self.structure = new_structure
        for data in self.data:
            setattr(self, data, new_data[data])
        # Save data array control temp variables
        self.data_rearrange_buffer = {
            'subdivide_mask': subdivide_mask,
            'merge_mask': merge_mask,
            'data_valid': data_valid,
            'new_data_idx': new_data_idx,
            'new_data_length': new_data_length,
            'new_data': new_data
        } 
 | 
