Spaces:
Runtime error
Runtime error
| import argparse | |
| import logging | |
| import random | |
| import uuid | |
| import numpy as np | |
| from transformers import pipeline | |
| from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
| from diffusers.utils import load_image | |
| from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
| from diffusers.utils import export_to_video | |
| from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5ForSpeechToSpeech | |
| from transformers import BlipProcessor, BlipForConditionalGeneration | |
| from transformers import TrOCRProcessor, VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
| from datasets import load_dataset | |
| from PIL import Image | |
| import io | |
| from torchvision import transforms | |
| import torch | |
| import torchaudio | |
| from speechbrain.pretrained import WaveformEnhancement | |
| import joblib | |
| from huggingface_hub import hf_hub_url, cached_download | |
| from transformers import AutoImageProcessor, TimesformerForVideoClassification | |
| from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation, AutoFeatureExtractor | |
| from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector, CannyDetector, MidasDetector | |
| from controlnet_aux.open_pose.body import Body | |
| from controlnet_aux.mlsd.models.mbv2_mlsd_large import MobileV2_MLSD_Large | |
| from controlnet_aux.hed import Network | |
| from transformers import DPTForDepthEstimation, DPTFeatureExtractor | |
| import warnings | |
| import time | |
| from espnet2.bin.tts_inference import Text2Speech | |
| import soundfile as sf | |
| from asteroid.models import BaseModel | |
| import traceback | |
| import os | |
| import yaml | |
| warnings.filterwarnings("ignore") | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--config", type=str, default="config.yaml") | |
| args = parser.parse_args() | |
| if __name__ != "__main__": | |
| args.config = "config.gradio.yaml" | |
| logger = logging.getLogger(__name__) | |
| logger.setLevel(logging.INFO) | |
| handler = logging.StreamHandler() | |
| handler.setLevel(logging.INFO) | |
| formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
| handler.setFormatter(formatter) | |
| logger.addHandler(handler) | |
| config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader) | |
| local_deployment = config["local_deployment"] | |
| if config["inference_mode"] == "huggingface": | |
| local_deployment = "none" | |
| PROXY = None | |
| if config["proxy"]: | |
| PROXY = { | |
| "https": config["proxy"], | |
| } | |
| start = time.time() | |
| # local_models = "models/" | |
| local_models = "" | |
| def load_pipes(local_deployment): | |
| other_pipes = {} | |
| standard_pipes = {} | |
| controlnet_sd_pipes = {} | |
| if local_deployment in ["full"]: | |
| other_pipes = { | |
| # "Salesforce/blip-image-captioning-large": { | |
| # "model": BlipForConditionalGeneration.from_pretrained(f"Salesforce/blip-image-captioning-large"), | |
| # "processor": BlipProcessor.from_pretrained(f"Salesforce/blip-image-captioning-large"), | |
| # "device": "cuda:0" | |
| # }, | |
| "damo-vilab/text-to-video-ms-1.7b": { | |
| "model": DiffusionPipeline.from_pretrained(f"{local_models}damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"), | |
| "device": "cuda:0" | |
| }, | |
| # "facebook/maskformer-swin-large-ade": { | |
| # "model": MaskFormerForInstanceSegmentation.from_pretrained(f"facebook/maskformer-swin-large-ade"), | |
| # "feature_extractor" : AutoFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-ade"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "microsoft/trocr-base-printed": { | |
| # "processor": TrOCRProcessor.from_pretrained(f"microsoft/trocr-base-printed"), | |
| # "model": VisionEncoderDecoderModel.from_pretrained(f"microsoft/trocr-base-printed"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "microsoft/trocr-base-handwritten": { | |
| # "processor": TrOCRProcessor.from_pretrained(f"microsoft/trocr-base-handwritten"), | |
| # "model": VisionEncoderDecoderModel.from_pretrained(f"microsoft/trocr-base-handwritten"), | |
| # "device": "cuda:0" | |
| # }, | |
| "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k": { | |
| "model": BaseModel.from_pretrained("JorisCos/DCCRNet_Libri1Mix_enhsingle_16k"), | |
| "device": "cuda:0" | |
| }, | |
| # "CompVis/stable-diffusion-v1-4": { | |
| # "model": DiffusionPipeline.from_pretrained(f"CompVis/stable-diffusion-v1-4"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "stabilityai/stable-diffusion-2-1": { | |
| # "model": DiffusionPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "microsoft/speecht5_tts":{ | |
| # "processor": SpeechT5Processor.from_pretrained(f"microsoft/speecht5_tts"), | |
| # "model": SpeechT5ForTextToSpeech.from_pretrained(f"microsoft/speecht5_tts"), | |
| # "vocoder": SpeechT5HifiGan.from_pretrained(f"microsoft/speecht5_hifigan"), | |
| # "embeddings_dataset": load_dataset(f"Matthijs/cmu-arctic-xvectors", split="validation"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "speechbrain/mtl-mimic-voicebank": { | |
| # "model": WaveformEnhancement.from_hparams(source="speechbrain/mtl-mimic-voicebank", savedir="models/mtl-mimic-voicebank"), | |
| # "device": "cuda:0" | |
| # }, | |
| "microsoft/speecht5_vc":{ | |
| "processor": SpeechT5Processor.from_pretrained(f"{local_models}microsoft/speecht5_vc"), | |
| "model": SpeechT5ForSpeechToSpeech.from_pretrained(f"{local_models}microsoft/speecht5_vc"), | |
| "vocoder": SpeechT5HifiGan.from_pretrained(f"{local_models}microsoft/speecht5_hifigan"), | |
| "embeddings_dataset": load_dataset(f"{local_models}Matthijs/cmu-arctic-xvectors", split="validation"), | |
| "device": "cuda:0" | |
| }, | |
| # "julien-c/wine-quality": { | |
| # "model": joblib.load(cached_download(hf_hub_url("julien-c/wine-quality", "sklearn_model.joblib"))) | |
| # }, | |
| # "facebook/timesformer-base-finetuned-k400": { | |
| # "processor": AutoImageProcessor.from_pretrained(f"facebook/timesformer-base-finetuned-k400"), | |
| # "model": TimesformerForVideoClassification.from_pretrained(f"facebook/timesformer-base-finetuned-k400"), | |
| # "device": "cuda:0" | |
| # }, | |
| "facebook/maskformer-swin-base-coco": { | |
| "feature_extractor": MaskFormerFeatureExtractor.from_pretrained(f"{local_models}facebook/maskformer-swin-base-coco"), | |
| "model": MaskFormerForInstanceSegmentation.from_pretrained(f"{local_models}facebook/maskformer-swin-base-coco"), | |
| "device": "cuda:0" | |
| }, | |
| "Intel/dpt-hybrid-midas": { | |
| "model": DPTForDepthEstimation.from_pretrained(f"{local_models}Intel/dpt-hybrid-midas", low_cpu_mem_usage=True), | |
| "feature_extractor": DPTFeatureExtractor.from_pretrained(f"{local_models}Intel/dpt-hybrid-midas"), | |
| "device": "cuda:0" | |
| } | |
| } | |
| if local_deployment in ["full", "standard"]: | |
| standard_pipes = { | |
| # "nlpconnect/vit-gpt2-image-captioning":{ | |
| # "model": VisionEncoderDecoderModel.from_pretrained(f"{local_models}nlpconnect/vit-gpt2-image-captioning"), | |
| # "feature_extractor": ViTImageProcessor.from_pretrained(f"{local_models}nlpconnect/vit-gpt2-image-captioning"), | |
| # "tokenizer": AutoTokenizer.from_pretrained(f"{local_models}nlpconnect/vit-gpt2-image-captioning"), | |
| # "device": "cuda:0" | |
| # }, | |
| "espnet/kan-bayashi_ljspeech_vits": { | |
| "model": Text2Speech.from_pretrained("espnet/kan-bayashi_ljspeech_vits"), | |
| "device": "cuda:0" | |
| }, | |
| # "lambdalabs/sd-image-variations-diffusers": { | |
| # "model": DiffusionPipeline.from_pretrained(f"{local_models}lambdalabs/sd-image-variations-diffusers"), #torch_dtype=torch.float16 | |
| # "device": "cuda:0" | |
| # }, | |
| "runwayml/stable-diffusion-v1-5": { | |
| "model": DiffusionPipeline.from_pretrained(f"{local_models}runwayml/stable-diffusion-v1-5"), | |
| "device": "cuda:0" | |
| }, | |
| # "superb/wav2vec2-base-superb-ks": { | |
| # "model": pipeline(task="audio-classification", model=f"superb/wav2vec2-base-superb-ks"), | |
| # "device": "cuda:0" | |
| # }, | |
| "openai/whisper-base": { | |
| "model": pipeline(task="automatic-speech-recognition", model=f"{local_models}openai/whisper-base"), | |
| "device": "cuda:0" | |
| }, | |
| # "microsoft/speecht5_asr": { | |
| # "model": pipeline(task="automatic-speech-recognition", model=f"{local_models}microsoft/speecht5_asr"), | |
| # "device": "cuda:0" | |
| # }, | |
| "Intel/dpt-large": { | |
| "model": pipeline(task="depth-estimation", model=f"{local_models}Intel/dpt-large"), | |
| "device": "cuda:0" | |
| }, | |
| # "microsoft/beit-base-patch16-224-pt22k-ft22k": { | |
| # "model": pipeline(task="image-classification", model=f"microsoft/beit-base-patch16-224-pt22k-ft22k"), | |
| # "device": "cuda:0" | |
| # }, | |
| "facebook/detr-resnet-50-panoptic": { | |
| "model": pipeline(task="image-segmentation", model=f"{local_models}facebook/detr-resnet-50-panoptic"), | |
| "device": "cuda:0" | |
| }, | |
| "facebook/detr-resnet-101": { | |
| "model": pipeline(task="object-detection", model=f"{local_models}facebook/detr-resnet-101"), | |
| "device": "cuda:0" | |
| }, | |
| # "openai/clip-vit-large-patch14": { | |
| # "model": pipeline(task="zero-shot-image-classification", model=f"openai/clip-vit-large-patch14"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "google/owlvit-base-patch32": { | |
| # "model": pipeline(task="zero-shot-object-detection", model=f"{local_models}google/owlvit-base-patch32"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "microsoft/DialoGPT-medium": { | |
| # "model": pipeline(task="conversational", model=f"microsoft/DialoGPT-medium"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "bert-base-uncased": { | |
| # "model": pipeline(task="fill-mask", model=f"bert-base-uncased"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "deepset/roberta-base-squad2": { | |
| # "model": pipeline(task = "question-answering", model=f"deepset/roberta-base-squad2"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "facebook/bart-large-cnn": { | |
| # "model": pipeline(task="summarization", model=f"facebook/bart-large-cnn"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "google/tapas-base-finetuned-wtq": { | |
| # "model": pipeline(task="table-question-answering", model=f"google/tapas-base-finetuned-wtq"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "distilbert-base-uncased-finetuned-sst-2-english": { | |
| # "model": pipeline(task="text-classification", model=f"distilbert-base-uncased-finetuned-sst-2-english"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "gpt2": { | |
| # "model": pipeline(task="text-generation", model="gpt2"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "mrm8488/t5-base-finetuned-question-generation-ap": { | |
| # "model": pipeline(task="text2text-generation", model=f"mrm8488/t5-base-finetuned-question-generation-ap"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "Jean-Baptiste/camembert-ner": { | |
| # "model": pipeline(task="token-classification", model=f"Jean-Baptiste/camembert-ner", aggregation_strategy="simple"), | |
| # "device": "cuda:0" | |
| # }, | |
| # "t5-base": { | |
| # "model": pipeline(task="translation", model=f"t5-base"), | |
| # "device": "cuda:0" | |
| # }, | |
| "impira/layoutlm-document-qa": { | |
| "model": pipeline(task="document-question-answering", model=f"{local_models}impira/layoutlm-document-qa"), | |
| "device": "cuda:0" | |
| }, | |
| "ydshieh/vit-gpt2-coco-en": { | |
| "model": pipeline(task="image-to-text", model=f"{local_models}ydshieh/vit-gpt2-coco-en"), | |
| "device": "cuda:0" | |
| }, | |
| "dandelin/vilt-b32-finetuned-vqa": { | |
| "model": pipeline(task="visual-question-answering", model=f"{local_models}dandelin/vilt-b32-finetuned-vqa"), | |
| "device": "cuda:0" | |
| } | |
| } | |
| if local_deployment in ["full", "standard", "minimal"]: | |
| controlnet = ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) | |
| controlnetpipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| f"{local_models}runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| hed_network = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
| controlnet_sd_pipes = { | |
| "openpose-control": { | |
| "model": OpenposeDetector.from_pretrained('lllyasviel/ControlNet') | |
| }, | |
| "mlsd-control": { | |
| "model": MLSDdetector.from_pretrained('lllyasviel/ControlNet') | |
| }, | |
| "hed-control": { | |
| "model": hed_network | |
| }, | |
| "scribble-control": { | |
| "model": hed_network | |
| }, | |
| "midas-control": { | |
| "model": MidasDetector.from_pretrained('lllyasviel/ControlNet') | |
| }, | |
| "canny-control": { | |
| "model": CannyDetector() | |
| }, | |
| "lllyasviel/sd-controlnet-canny":{ | |
| "control": controlnet, | |
| "model": controlnetpipe, | |
| "device": "cuda:0" | |
| }, | |
| "lllyasviel/sd-controlnet-depth":{ | |
| "control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16), | |
| "model": controlnetpipe, | |
| "device": "cuda:0" | |
| }, | |
| "lllyasviel/sd-controlnet-hed":{ | |
| "control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-hed", torch_dtype=torch.float16), | |
| "model": controlnetpipe, | |
| "device": "cuda:0" | |
| }, | |
| "lllyasviel/sd-controlnet-mlsd":{ | |
| "control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-mlsd", torch_dtype=torch.float16), | |
| "model": controlnetpipe, | |
| "device": "cuda:0" | |
| }, | |
| "lllyasviel/sd-controlnet-openpose":{ | |
| "control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16), | |
| "model": controlnetpipe, | |
| "device": "cuda:0" | |
| }, | |
| "lllyasviel/sd-controlnet-scribble":{ | |
| "control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16), | |
| "model": controlnetpipe, | |
| "device": "cuda:0" | |
| }, | |
| "lllyasviel/sd-controlnet-seg":{ | |
| "control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16), | |
| "model": controlnetpipe, | |
| "device": "cuda:0" | |
| } | |
| } | |
| pipes = {**standard_pipes, **other_pipes, **controlnet_sd_pipes} | |
| return pipes | |
| pipes = load_pipes(local_deployment) | |
| end = time.time() | |
| during = end - start | |
| print(f"[ ready ] {during}s") | |
| def running(): | |
| return {"running": True} | |
| def status(model_id): | |
| disabled_models = ["microsoft/trocr-base-printed", "microsoft/trocr-base-handwritten"] | |
| if model_id in pipes.keys() and model_id not in disabled_models: | |
| print(f"[ check {model_id} ] success") | |
| return {"loaded": True} | |
| else: | |
| print(f"[ check {model_id} ] failed") | |
| return {"loaded": False} | |
| def models(model_id, data): | |
| while "using" in pipes[model_id] and pipes[model_id]["using"]: | |
| print(f"[ inference {model_id} ] waiting") | |
| time.sleep(0.1) | |
| pipes[model_id]["using"] = True | |
| print(f"[ inference {model_id} ] start") | |
| start = time.time() | |
| pipe = pipes[model_id]["model"] | |
| if "device" in pipes[model_id]: | |
| try: | |
| pipe.to(pipes[model_id]["device"]) | |
| except: | |
| pipe.device = torch.device(pipes[model_id]["device"]) | |
| pipe.model.to(pipes[model_id]["device"]) | |
| result = None | |
| try: | |
| # text to video | |
| if model_id == "damo-vilab/text-to-video-ms-1.7b": | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| # pipe.enable_model_cpu_offload() | |
| prompt = data["text"] | |
| video_frames = pipe(prompt, num_inference_steps=50, num_frames=40).frames | |
| file_name = str(uuid.uuid4())[:4] | |
| video_path = export_to_video(video_frames, f"public/videos/{file_name}.mp4") | |
| new_file_name = str(uuid.uuid4())[:4] | |
| os.system(f"ffmpeg -i {video_path} -vcodec libx264 public/videos/{new_file_name}.mp4") | |
| if os.path.exists(f"public/videos/{new_file_name}.mp4"): | |
| result = {"path": f"/videos/{new_file_name}.mp4"} | |
| else: | |
| result = {"path": f"/videos/{file_name}.mp4"} | |
| # controlnet | |
| if model_id.startswith("lllyasviel/sd-controlnet-"): | |
| pipe.controlnet.to('cpu') | |
| pipe.controlnet = pipes[model_id]["control"].to(pipes[model_id]["device"]) | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| control_image = load_image(data["img_url"]) | |
| # generator = torch.manual_seed(66) | |
| out_image: Image = pipe(data["text"], num_inference_steps=20, image=control_image).images[0] | |
| file_name = str(uuid.uuid4())[:4] | |
| out_image.save(f"public/images/{file_name}.png") | |
| result = {"path": f"/images/{file_name}.png"} | |
| if model_id.endswith("-control"): | |
| image = load_image(data["img_url"]) | |
| if "scribble" in model_id: | |
| control = pipe(image, scribble = True) | |
| elif "canny" in model_id: | |
| control = pipe(image, low_threshold=100, high_threshold=200) | |
| else: | |
| control = pipe(image) | |
| file_name = str(uuid.uuid4())[:4] | |
| control.save(f"public/images/{file_name}.png") | |
| result = {"path": f"/images/{file_name}.png"} | |
| # image to image | |
| if model_id == "lambdalabs/sd-image-variations-diffusers": | |
| im = load_image(data["img_url"]) | |
| file_name = str(uuid.uuid4())[:4] | |
| with open(f"public/images/{file_name}.png", "wb") as f: | |
| f.write(data) | |
| tform = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Resize( | |
| (224, 224), | |
| interpolation=transforms.InterpolationMode.BICUBIC, | |
| antialias=False, | |
| ), | |
| transforms.Normalize( | |
| [0.48145466, 0.4578275, 0.40821073], | |
| [0.26862954, 0.26130258, 0.27577711]), | |
| ]) | |
| inp = tform(im).to(pipes[model_id]["device"]).unsqueeze(0) | |
| out = pipe(inp, guidance_scale=3) | |
| out["images"][0].save(f"public/images/{file_name}.jpg") | |
| result = {"path": f"/images/{file_name}.jpg"} | |
| # image to text | |
| if model_id == "Salesforce/blip-image-captioning-large": | |
| raw_image = load_image(data["img_url"]).convert('RGB') | |
| text = data["text"] | |
| inputs = pipes[model_id]["processor"](raw_image, return_tensors="pt").to(pipes[model_id]["device"]) | |
| out = pipe.generate(**inputs) | |
| caption = pipes[model_id]["processor"].decode(out[0], skip_special_tokens=True) | |
| result = {"generated text": caption} | |
| if model_id == "ydshieh/vit-gpt2-coco-en": | |
| img_url = data["img_url"] | |
| generated_text = pipe(img_url)[0]['generated_text'] | |
| result = {"generated text": generated_text} | |
| if model_id == "nlpconnect/vit-gpt2-image-captioning": | |
| image = load_image(data["img_url"]).convert("RGB") | |
| pixel_values = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").pixel_values | |
| pixel_values = pixel_values.to(pipes[model_id]["device"]) | |
| generated_ids = pipe.generate(pixel_values, **{"max_length": 200, "num_beams": 1}) | |
| generated_text = pipes[model_id]["tokenizer"].batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| result = {"generated text": generated_text} | |
| # image to text: OCR | |
| if model_id == "microsoft/trocr-base-printed" or model_id == "microsoft/trocr-base-handwritten": | |
| image = load_image(data["img_url"]).convert("RGB") | |
| pixel_values = pipes[model_id]["processor"](image, return_tensors="pt").pixel_values | |
| pixel_values = pixel_values.to(pipes[model_id]["device"]) | |
| generated_ids = pipe.generate(pixel_values) | |
| generated_text = pipes[model_id]["processor"].batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| result = {"generated text": generated_text} | |
| # text to image | |
| if model_id == "runwayml/stable-diffusion-v1-5": | |
| file_name = str(uuid.uuid4())[:4] | |
| text = data["text"] | |
| out = pipe(prompt=text) | |
| out["images"][0].save(f"public/images/{file_name}.jpg") | |
| result = {"path": f"/images/{file_name}.jpg"} | |
| # object detection | |
| if model_id == "google/owlvit-base-patch32" or model_id == "facebook/detr-resnet-101": | |
| img_url = data["img_url"] | |
| open_types = ["cat", "couch", "person", "car", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird"] | |
| result = pipe(img_url, candidate_labels=open_types) | |
| # VQA | |
| if model_id == "dandelin/vilt-b32-finetuned-vqa": | |
| question = data["text"] | |
| img_url = data["img_url"] | |
| result = pipe(question=question, image=img_url) | |
| #DQA | |
| if model_id == "impira/layoutlm-document-qa": | |
| question = data["text"] | |
| img_url = data["img_url"] | |
| result = pipe(img_url, question) | |
| # depth-estimation | |
| if model_id == "Intel/dpt-large": | |
| output = pipe(data["img_url"]) | |
| image = output['depth'] | |
| name = str(uuid.uuid4())[:4] | |
| image.save(f"public/images/{name}.jpg") | |
| result = {"path": f"/images/{name}.jpg"} | |
| if model_id == "Intel/dpt-hybrid-midas" and model_id == "Intel/dpt-large": | |
| image = load_image(data["img_url"]) | |
| inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = pipe(**inputs) | |
| predicted_depth = outputs.predicted_depth | |
| prediction = torch.nn.functional.interpolate( | |
| predicted_depth.unsqueeze(1), | |
| size=image.size[::-1], | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| output = prediction.squeeze().cpu().numpy() | |
| formatted = (output * 255 / np.max(output)).astype("uint8") | |
| image = Image.fromarray(formatted) | |
| name = str(uuid.uuid4())[:4] | |
| image.save(f"public/images/{name}.jpg") | |
| result = {"path": f"/images/{name}.jpg"} | |
| # TTS | |
| if model_id == "espnet/kan-bayashi_ljspeech_vits": | |
| text = data["text"] | |
| wav = pipe(text)["wav"] | |
| name = str(uuid.uuid4())[:4] | |
| sf.write(f"public/audios/{name}.wav", wav.cpu().numpy(), pipe.fs, "PCM_16") | |
| result = {"path": f"/audios/{name}.wav"} | |
| if model_id == "microsoft/speecht5_tts": | |
| text = data["text"] | |
| inputs = pipes[model_id]["processor"](text=text, return_tensors="pt") | |
| embeddings_dataset = pipes[model_id]["embeddings_dataset"] | |
| speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(pipes[model_id]["device"]) | |
| pipes[model_id]["vocoder"].to(pipes[model_id]["device"]) | |
| speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"]) | |
| name = str(uuid.uuid4())[:4] | |
| sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000) | |
| result = {"path": f"/audios/{name}.wav"} | |
| # ASR | |
| if model_id == "openai/whisper-base" or model_id == "microsoft/speecht5_asr": | |
| audio_url = data["audio_url"] | |
| result = { "text": pipe(audio_url)["text"]} | |
| # audio to audio | |
| if model_id == "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k": | |
| audio_url = data["audio_url"] | |
| wav, sr = torchaudio.load(audio_url) | |
| with torch.no_grad(): | |
| result_wav = pipe(wav.to(pipes[model_id]["device"])) | |
| name = str(uuid.uuid4())[:4] | |
| sf.write(f"public/audios/{name}.wav", result_wav.cpu().squeeze().numpy(), sr) | |
| result = {"path": f"/audios/{name}.wav"} | |
| if model_id == "microsoft/speecht5_vc": | |
| audio_url = data["audio_url"] | |
| wav, sr = torchaudio.load(audio_url) | |
| inputs = pipes[model_id]["processor"](audio=wav, sampling_rate=sr, return_tensors="pt") | |
| embeddings_dataset = pipes[model_id]["embeddings_dataset"] | |
| speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
| pipes[model_id]["vocoder"].to(pipes[model_id]["device"]) | |
| speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"]) | |
| name = str(uuid.uuid4())[:4] | |
| sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000) | |
| result = {"path": f"/audios/{name}.wav"} | |
| # segmentation | |
| if model_id == "facebook/detr-resnet-50-panoptic": | |
| result = [] | |
| segments = pipe(data["img_url"]) | |
| image = load_image(data["img_url"]) | |
| colors = [] | |
| for i in range(len(segments)): | |
| colors.append((random.randint(100, 255), random.randint(100, 255), random.randint(100, 255), 50)) | |
| for segment in segments: | |
| mask = segment["mask"] | |
| mask = mask.convert('L') | |
| layer = Image.new('RGBA', mask.size, colors[i]) | |
| image.paste(layer, (0, 0), mask) | |
| name = str(uuid.uuid4())[:4] | |
| image.save(f"public/images/{name}.jpg") | |
| result = {"path": f"/images/{name}.jpg"} | |
| if model_id == "facebook/maskformer-swin-base-coco" or model_id == "facebook/maskformer-swin-large-ade": | |
| image = load_image(data["img_url"]) | |
| inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").to(pipes[model_id]["device"]) | |
| outputs = pipe(**inputs) | |
| result = pipes[model_id]["feature_extractor"].post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] | |
| predicted_panoptic_map = result["segmentation"].cpu().numpy() | |
| predicted_panoptic_map = Image.fromarray(predicted_panoptic_map.astype(np.uint8)) | |
| name = str(uuid.uuid4())[:4] | |
| predicted_panoptic_map.save(f"public/images/{name}.jpg") | |
| result = {"path": f"/images/{name}.jpg"} | |
| except Exception as e: | |
| print(e) | |
| traceback.print_exc() | |
| result = {"error": {"message": "Error when running the model inference."}} | |
| if "device" in pipes[model_id]: | |
| try: | |
| pipe.to("cpu") | |
| torch.cuda.empty_cache() | |
| except: | |
| pipe.device = torch.device("cpu") | |
| pipe.model.to("cpu") | |
| torch.cuda.empty_cache() | |
| pipes[model_id]["using"] = False | |
| if result is None: | |
| result = {"error": {"message": "model not found"}} | |
| end = time.time() | |
| during = end - start | |
| print(f"[ complete {model_id} ] {during}s") | |
| print(f"[ result {model_id} ] {result}") | |
| return result | |