from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() learn = load_learner('model.pkl') categories = ('Dog', 'Cat') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) demo = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), # Image uploader #outputs=gr.Textbox(label="Classification Result"), # Textbox for the output outputs=gr.Label(label="Classification Result"), # Bar chart and label for the output examples=['dog.jpg', 'cat.jpg', 'dunno.jpg'] # Example images ) demo.launch(inline=False,share=True)