change flask
Browse files
app.py
CHANGED
@@ -8,6 +8,38 @@ from models.interface_types import InterfaceType
|
|
8 |
from constants import DEVICE
|
9 |
from state import get_settings
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
|
12 |
parser.add_argument(
|
13 |
"-s",
|
@@ -161,3 +193,92 @@ print("Starting web UI mode")
|
|
161 |
start_webui(
|
162 |
args.share,
|
163 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from constants import DEVICE
|
9 |
from state import get_settings
|
10 |
|
11 |
+
|
12 |
+
from fastapi import FastAPI,Body
|
13 |
+
|
14 |
+
import uvicorn
|
15 |
+
import json
|
16 |
+
import logging
|
17 |
+
from PIL import Image
|
18 |
+
import time
|
19 |
+
from constants import DESCRIPTION, LOGO
|
20 |
+
from model import get_pipeline
|
21 |
+
from utils import replace_background
|
22 |
+
from diffusers.utils import load_image
|
23 |
+
import base64
|
24 |
+
import io
|
25 |
+
from datetime import datetime
|
26 |
+
|
27 |
+
app = FastAPI(name="mutilParam")
|
28 |
+
|
29 |
+
from typing import Any
|
30 |
+
from backend.models.lcmdiffusion_setting import DiffusionTask
|
31 |
+
|
32 |
+
from frontend.utils import is_reshape_required
|
33 |
+
from concurrent.futures import ThreadPoolExecutor
|
34 |
+
|
35 |
+
app_settings = get_settings()
|
36 |
+
|
37 |
+
context = Context(InterfaceType.WEBUI)
|
38 |
+
previous_width = 0
|
39 |
+
previous_height = 0
|
40 |
+
previous_model_id = ""
|
41 |
+
previous_num_of_images = 0
|
42 |
+
|
43 |
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
|
44 |
parser.add_argument(
|
45 |
"-s",
|
|
|
193 |
start_webui(
|
194 |
args.share,
|
195 |
)
|
196 |
+
|
197 |
+
app.get("/")
|
198 |
+
def root():
|
199 |
+
return {"API": "hello"}
|
200 |
+
|
201 |
+
@app.post("/img2img")
|
202 |
+
async def predict(prompt=Body(...),imgbase64data=Body(...),negative_prompt=Body(None),userId=Body(None)):
|
203 |
+
pipeline = get_pipeline()
|
204 |
+
MAX_QUEUE_SIZE = 4
|
205 |
+
start = time.time()
|
206 |
+
print("参数",imgbase64data,prompt)
|
207 |
+
image_data = base64.b64decode(imgbase64data)
|
208 |
+
image1 = Image.open(io.BytesIO(image_data))
|
209 |
+
w, h = image1.size
|
210 |
+
newW = 512
|
211 |
+
newH = int(h * newW / w)
|
212 |
+
img = image1.resize((newW, newH))
|
213 |
+
end1 = time.time()
|
214 |
+
now = datetime.now()
|
215 |
+
print(now)
|
216 |
+
print("图像:", img.size)
|
217 |
+
print("加载管道:", end1 - start)
|
218 |
+
global previous_height, previous_width, previous_model_id, previous_num_of_images, app_settings
|
219 |
+
|
220 |
+
app_settings.settings.lcm_diffusion_setting.prompt = prompt
|
221 |
+
app_settings.settings.lcm_diffusion_setting.negative_prompt = negative_prompt
|
222 |
+
app_settings.settings.lcm_diffusion_setting.init_image = img
|
223 |
+
app_settings.settings.lcm_diffusion_setting.strength = 0.6
|
224 |
+
|
225 |
+
app_settings.settings.lcm_diffusion_setting.diffusion_task = (
|
226 |
+
DiffusionTask.image_to_image.value
|
227 |
+
)
|
228 |
+
model_id = app_settings.settings.lcm_diffusion_setting.openvino_lcm_model_id
|
229 |
+
reshape = False
|
230 |
+
app_settings.settings.lcm_diffusion_setting.image_height=newH
|
231 |
+
image_width = app_settings.settings.lcm_diffusion_setting.image_width
|
232 |
+
image_height = app_settings.settings.lcm_diffusion_setting.image_height
|
233 |
+
num_images = app_settings.settings.lcm_diffusion_setting.number_of_images
|
234 |
+
reshape = is_reshape_required(
|
235 |
+
previous_width,
|
236 |
+
image_width,
|
237 |
+
previous_height,
|
238 |
+
image_height,
|
239 |
+
previous_model_id,
|
240 |
+
model_id,
|
241 |
+
previous_num_of_images,
|
242 |
+
num_images,
|
243 |
+
)
|
244 |
+
|
245 |
+
|
246 |
+
with ThreadPoolExecutor(max_workers=1) as executor:
|
247 |
+
future = executor.submit(
|
248 |
+
context.generate_text_to_image,
|
249 |
+
app_settings.settings,
|
250 |
+
reshape,
|
251 |
+
DEVICE,
|
252 |
+
)
|
253 |
+
images = future.result()
|
254 |
+
# images = context.generate_text_to_image(
|
255 |
+
# app_settings.settings,
|
256 |
+
# reshape,
|
257 |
+
# DEVICE,
|
258 |
+
# )
|
259 |
+
previous_width = image_width
|
260 |
+
previous_height = image_height
|
261 |
+
previous_model_id = model_id
|
262 |
+
previous_num_of_images = num_images
|
263 |
+
output_image = images[0]
|
264 |
+
end2 = time.time()
|
265 |
+
print("测试",output_image)
|
266 |
+
print("s生成完成:", end2 - end1)
|
267 |
+
# 将图片对象转换为bytes
|
268 |
+
image_data = io.BytesIO()
|
269 |
+
|
270 |
+
# 将图像保存到BytesIO对象中,格式为JPEG
|
271 |
+
output_image.save(image_data, format='JPEG')
|
272 |
+
|
273 |
+
# 将BytesIO对象的内容转换为字节串
|
274 |
+
image_data_bytes = image_data.getvalue()
|
275 |
+
output_image_base64 = base64.b64encode(image_data_bytes).decode('utf-8')
|
276 |
+
print("完成的图片:", output_image_base64)
|
277 |
+
logger = logging.getLogger('')
|
278 |
+
logger.info(output_image_base64)
|
279 |
+
return output_image_base64
|
280 |
+
|
281 |
+
|
282 |
+
@app.post("/predict")
|
283 |
+
async def predict(prompt=Body(...)):
|
284 |
+
return f"您好,{prompt}"
|