Spaces:
Running
Running
jasonshaoshun
commited on
Commit
·
200beb2
1
Parent(s):
ef71549
debug
Browse files- app.py +234 -217
- custom-select-columns.py +300 -20
app.py
CHANGED
|
@@ -38,6 +38,103 @@ from src.submission.submit import add_new_eval
|
|
| 38 |
|
| 39 |
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def restart_space():
|
| 42 |
API.restart_space(repo_id=REPO_ID)
|
| 43 |
|
|
@@ -128,122 +225,58 @@ from src.about import TasksMib_Subgraph
|
|
| 128 |
|
| 129 |
|
| 130 |
|
| 131 |
-
def init_leaderboard_mib_subgraph(dataframe, track):
|
| 132 |
-
"""Initialize the subgraph leaderboard with grouped column selection by benchmark."""
|
| 133 |
-
if dataframe is None or dataframe.empty:
|
| 134 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 135 |
-
|
| 136 |
-
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
| 137 |
-
|
| 138 |
-
# Create groups of columns by benchmark
|
| 139 |
-
benchmark_groups = []
|
| 140 |
-
|
| 141 |
-
# For each benchmark in our TasksMib_Subgraph enum...
|
| 142 |
-
for task in TasksMib_Subgraph:
|
| 143 |
-
benchmark = task.value.benchmark
|
| 144 |
-
# Get all valid columns for this benchmark's models
|
| 145 |
-
benchmark_cols = [
|
| 146 |
-
f"{benchmark}_{model}"
|
| 147 |
-
for model in task.value.models
|
| 148 |
-
if f"{benchmark}_{model}" in dataframe.columns
|
| 149 |
-
]
|
| 150 |
-
if benchmark_cols: # Only add if we have valid columns
|
| 151 |
-
benchmark_groups.append(benchmark_cols)
|
| 152 |
-
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
| 153 |
-
|
| 154 |
-
# Create model groups as well
|
| 155 |
-
model_groups = []
|
| 156 |
-
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
| 157 |
-
|
| 158 |
-
# For each unique model...
|
| 159 |
-
for model in all_models:
|
| 160 |
-
# Get all valid columns for this model across benchmarks
|
| 161 |
-
model_cols = [
|
| 162 |
-
f"{task.value.benchmark}_{model}"
|
| 163 |
-
for task in TasksMib_Subgraph
|
| 164 |
-
if model in task.value.models
|
| 165 |
-
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
| 166 |
-
]
|
| 167 |
-
if model_cols: # Only add if we have valid columns
|
| 168 |
-
model_groups.append(model_cols)
|
| 169 |
-
print(f"\nModel group for {model}:", model_cols)
|
| 170 |
-
|
| 171 |
-
# Combine all groups
|
| 172 |
-
all_groups = benchmark_groups + model_groups
|
| 173 |
-
|
| 174 |
-
# Flatten groups for default selection (show everything initially)
|
| 175 |
-
all_columns = [col for group in all_groups for col in group]
|
| 176 |
-
print("\nAll available columns:", all_columns)
|
| 177 |
-
|
| 178 |
-
return Leaderboard(
|
| 179 |
-
value=dataframe,
|
| 180 |
-
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
| 181 |
-
select_columns=SelectColumns(
|
| 182 |
-
default_selection=all_columns, # Show all columns initially
|
| 183 |
-
label="Select Results:"
|
| 184 |
-
),
|
| 185 |
-
search_columns=["Method"],
|
| 186 |
-
hide_columns=[],
|
| 187 |
-
interactive=False,
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
|
| 191 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
| 192 |
-
# """Initialize the subgraph leaderboard with
|
| 193 |
# if dataframe is None or dataframe.empty:
|
| 194 |
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 195 |
|
| 196 |
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
| 197 |
|
| 198 |
-
# #
|
| 199 |
-
# # This is like creating a translation dictionary between internal names and display names
|
| 200 |
-
# display_mapping = {}
|
| 201 |
-
# for task in TasksMib_Subgraph:
|
| 202 |
-
# for model in task.value.models:
|
| 203 |
-
# field_name = f"{task.value.benchmark}_{model}"
|
| 204 |
-
# display_name = f"{task.value.benchmark}({model})"
|
| 205 |
-
# display_mapping[field_name] = display_name
|
| 206 |
-
|
| 207 |
-
# # Now when creating benchmark groups, we'll use display names
|
| 208 |
# benchmark_groups = []
|
|
|
|
|
|
|
| 209 |
# for task in TasksMib_Subgraph:
|
| 210 |
# benchmark = task.value.benchmark
|
|
|
|
| 211 |
# benchmark_cols = [
|
| 212 |
-
#
|
| 213 |
# for model in task.value.models
|
| 214 |
# if f"{benchmark}_{model}" in dataframe.columns
|
| 215 |
# ]
|
| 216 |
-
# if benchmark_cols:
|
| 217 |
# benchmark_groups.append(benchmark_cols)
|
| 218 |
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
| 219 |
|
| 220 |
-
# #
|
| 221 |
# model_groups = []
|
| 222 |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
| 223 |
|
|
|
|
| 224 |
# for model in all_models:
|
|
|
|
| 225 |
# model_cols = [
|
| 226 |
-
#
|
| 227 |
# for task in TasksMib_Subgraph
|
| 228 |
# if model in task.value.models
|
| 229 |
# and f"{task.value.benchmark}_{model}" in dataframe.columns
|
| 230 |
# ]
|
| 231 |
-
# if model_cols:
|
| 232 |
# model_groups.append(model_cols)
|
| 233 |
# print(f"\nModel group for {model}:", model_cols)
|
| 234 |
|
| 235 |
-
# # Combine all groups
|
| 236 |
# all_groups = benchmark_groups + model_groups
|
|
|
|
|
|
|
| 237 |
# all_columns = [col for group in all_groups for col in group]
|
| 238 |
-
|
| 239 |
-
# # Important: We need to rename our DataFrame columns to match display names
|
| 240 |
-
# renamed_df = dataframe.rename(columns=display_mapping)
|
| 241 |
|
| 242 |
# return Leaderboard(
|
| 243 |
-
# value=
|
| 244 |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
| 245 |
# select_columns=SelectColumns(
|
| 246 |
-
# default_selection=all_columns, #
|
| 247 |
# label="Select Results:"
|
| 248 |
# ),
|
| 249 |
# search_columns=["Method"],
|
|
@@ -252,152 +285,132 @@ def init_leaderboard_mib_subgraph(dataframe, track):
|
|
| 252 |
# )
|
| 253 |
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
|
| 257 |
-
class SmartSelectColumns(gr.SelectColumns):
|
| 258 |
-
"""
|
| 259 |
-
Enhanced SelectColumns component for Gradio Leaderboard with smart filtering and mapping capabilities.
|
| 260 |
-
"""
|
| 261 |
-
def __init__(
|
| 262 |
-
self,
|
| 263 |
-
column_filters: Optional[Dict[str, List[str]]] = None,
|
| 264 |
-
column_mapping: Optional[Dict[str, str]] = None,
|
| 265 |
-
initial_selected: Optional[List[str]] = None,
|
| 266 |
-
*args,
|
| 267 |
-
**kwargs
|
| 268 |
-
):
|
| 269 |
-
"""
|
| 270 |
-
Initialize SmartSelectColumns with enhanced functionality.
|
| 271 |
-
|
| 272 |
-
Args:
|
| 273 |
-
column_filters: Dict mapping filter names to lists of substrings to match
|
| 274 |
-
column_mapping: Dict mapping actual column names to display names
|
| 275 |
-
initial_selected: List of column names to be initially selected
|
| 276 |
-
*args, **kwargs: Additional arguments passed to parent SelectColumns
|
| 277 |
-
"""
|
| 278 |
-
super().__init__(*args, **kwargs)
|
| 279 |
-
self.column_filters = column_filters or {}
|
| 280 |
-
self.column_mapping = column_mapping or {}
|
| 281 |
-
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
|
| 282 |
-
self.initial_selected = initial_selected or []
|
| 283 |
-
|
| 284 |
-
def preprocess(self, x: List[str]) -> List[str]:
|
| 285 |
-
"""
|
| 286 |
-
Transform selected display names back to actual column names.
|
| 287 |
-
|
| 288 |
-
Args:
|
| 289 |
-
x: List of selected display names
|
| 290 |
-
|
| 291 |
-
Returns:
|
| 292 |
-
List of actual column names
|
| 293 |
-
"""
|
| 294 |
-
return [self.reverse_mapping.get(col, col) for col in x]
|
| 295 |
-
|
| 296 |
-
def postprocess(self, y: List[str]) -> List[str]:
|
| 297 |
-
"""
|
| 298 |
-
Transform actual column names to display names.
|
| 299 |
-
|
| 300 |
-
Args:
|
| 301 |
-
y: List of actual column names
|
| 302 |
-
|
| 303 |
-
Returns:
|
| 304 |
-
List of display names
|
| 305 |
-
"""
|
| 306 |
-
return [self.column_mapping.get(col, col) for col in y]
|
| 307 |
-
|
| 308 |
-
def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]:
|
| 309 |
-
"""
|
| 310 |
-
Get columns filtered by substring matches.
|
| 311 |
-
|
| 312 |
-
Args:
|
| 313 |
-
df: Input DataFrame
|
| 314 |
-
|
| 315 |
-
Returns:
|
| 316 |
-
Dict mapping filter names to lists of matching display names
|
| 317 |
-
"""
|
| 318 |
-
filtered_cols = {}
|
| 319 |
-
|
| 320 |
-
for filter_name, substrings in self.column_filters.items():
|
| 321 |
-
matching_cols = []
|
| 322 |
-
for col in df.columns:
|
| 323 |
-
if any(substr.lower() in col.lower() for substr in substrings):
|
| 324 |
-
display_name = self.column_mapping.get(col, col)
|
| 325 |
-
matching_cols.append(display_name)
|
| 326 |
-
filtered_cols[filter_name] = matching_cols
|
| 327 |
-
|
| 328 |
-
return filtered_cols
|
| 329 |
-
|
| 330 |
-
def update(
|
| 331 |
-
self,
|
| 332 |
-
value: Union[pd.DataFrame, Dict[str, List[str]], Any],
|
| 333 |
-
interactive: Optional[bool] = None
|
| 334 |
-
) -> Dict:
|
| 335 |
-
"""
|
| 336 |
-
Update component with new values, supporting DataFrame fields.
|
| 337 |
-
|
| 338 |
-
Args:
|
| 339 |
-
value: DataFrame, dict of columns, or fields object
|
| 340 |
-
interactive: Whether component should be interactive
|
| 341 |
-
|
| 342 |
-
Returns:
|
| 343 |
-
Dict containing update configuration
|
| 344 |
-
"""
|
| 345 |
-
if isinstance(value, pd.DataFrame):
|
| 346 |
-
filtered_cols = self.get_filtered_columns(value)
|
| 347 |
-
choices = [self.column_mapping.get(col, col) for col in value.columns]
|
| 348 |
-
|
| 349 |
-
# Set initial selection if provided
|
| 350 |
-
value = self.initial_selected if self.initial_selected else choices
|
| 351 |
-
|
| 352 |
-
return {
|
| 353 |
-
"choices": choices,
|
| 354 |
-
"value": value,
|
| 355 |
-
"filtered_cols": filtered_cols,
|
| 356 |
-
"interactive": interactive if interactive is not None else self.interactive
|
| 357 |
-
}
|
| 358 |
-
|
| 359 |
-
# Handle fields object (e.g., from dataclass)
|
| 360 |
-
if hasattr(value, '__dataclass_fields__'):
|
| 361 |
-
field_names = [field.name for field in fields(value)]
|
| 362 |
-
choices = [self.column_mapping.get(name, name) for name in field_names]
|
| 363 |
-
return {
|
| 364 |
-
"choices": choices,
|
| 365 |
-
"value": self.initial_selected if self.initial_selected else choices,
|
| 366 |
-
"interactive": interactive if interactive is not None else self.interactive
|
| 367 |
-
}
|
| 368 |
-
|
| 369 |
-
return super().update(value, interactive)
|
| 370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
-
#
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
|
| 390 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
smart_columns = SmartSelectColumns(
|
| 392 |
-
|
| 393 |
column_mapping=mappings,
|
| 394 |
-
initial_selected=
|
| 395 |
-
multiselect=True
|
| 396 |
)
|
| 397 |
|
| 398 |
-
|
|
|
|
| 399 |
value=renamed_df,
|
| 400 |
-
datatype=[c.type for c in fields(
|
| 401 |
select_columns=smart_columns,
|
| 402 |
search_columns=["Method"],
|
| 403 |
hide_columns=[],
|
|
@@ -405,6 +418,10 @@ def init_leaderboard_mib_subgraph(dataframe, track):
|
|
| 405 |
)
|
| 406 |
|
| 407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
| 409 |
# """Initialize the subgraph leaderboard with group-based column selection."""
|
| 410 |
# if dataframe is None or dataframe.empty:
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
from gradio_leaderboard import SelectColumns, Leaderboard
|
| 51 |
+
import pandas as pd
|
| 52 |
+
from typing import List, Dict, Union, Optional, Any
|
| 53 |
+
from dataclasses import fields
|
| 54 |
+
|
| 55 |
+
class SmartSelectColumns(SelectColumns):
|
| 56 |
+
"""
|
| 57 |
+
Enhanced SelectColumns component for gradio_leaderboard with explicit column grouping.
|
| 58 |
+
"""
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
column_groups: Optional[Dict[str, List[str]]] = None,
|
| 62 |
+
column_mapping: Optional[Dict[str, str]] = None,
|
| 63 |
+
initial_selected: Optional[List[str]] = None,
|
| 64 |
+
**kwargs
|
| 65 |
+
):
|
| 66 |
+
"""
|
| 67 |
+
Initialize SmartSelectColumns with enhanced functionality.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
column_groups: Dict mapping group names to lists of columns in that group
|
| 71 |
+
column_mapping: Dict mapping actual column names to display names
|
| 72 |
+
initial_selected: List of columns to show initially
|
| 73 |
+
"""
|
| 74 |
+
super().__init__(**kwargs)
|
| 75 |
+
self.column_groups = column_groups or {}
|
| 76 |
+
self.column_mapping = column_mapping or {}
|
| 77 |
+
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
|
| 78 |
+
self.initial_selected = initial_selected or []
|
| 79 |
+
|
| 80 |
+
def preprocess_value(self, x: List[str]) -> List[str]:
|
| 81 |
+
"""Transform selected display names back to actual column names."""
|
| 82 |
+
return [self.reverse_mapping.get(col, col) for col in x]
|
| 83 |
+
|
| 84 |
+
def postprocess_value(self, y: List[str]) -> List[str]:
|
| 85 |
+
"""Transform actual column names to display names."""
|
| 86 |
+
return [self.column_mapping.get(col, col) for col in y]
|
| 87 |
+
|
| 88 |
+
def update(
|
| 89 |
+
self,
|
| 90 |
+
value: Union[pd.DataFrame, Dict[str, List[str]], Any]
|
| 91 |
+
) -> Dict:
|
| 92 |
+
"""Update component with new values."""
|
| 93 |
+
if isinstance(value, pd.DataFrame):
|
| 94 |
+
# Get all column names and convert to display names
|
| 95 |
+
choices = [self.column_mapping.get(col, col) for col in value.columns]
|
| 96 |
+
|
| 97 |
+
# Use initial selection or default columns
|
| 98 |
+
selected = self.initial_selected if self.initial_selected else choices
|
| 99 |
+
|
| 100 |
+
# Convert column groups to use display names
|
| 101 |
+
filtered_cols = {}
|
| 102 |
+
for group_name, columns in self.column_groups.items():
|
| 103 |
+
filtered_cols[group_name] = [
|
| 104 |
+
self.column_mapping.get(col, col)
|
| 105 |
+
for col in columns
|
| 106 |
+
if col in value.columns
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
return {
|
| 110 |
+
"choices": choices,
|
| 111 |
+
"value": selected,
|
| 112 |
+
"filtered_cols": filtered_cols
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
# Handle fields object
|
| 116 |
+
if hasattr(value, '__dataclass_fields__'):
|
| 117 |
+
field_names = [field.name for field in fields(value)]
|
| 118 |
+
choices = [self.column_mapping.get(name, name) for name in field_names]
|
| 119 |
+
return {
|
| 120 |
+
"choices": choices,
|
| 121 |
+
"value": self.initial_selected if self.initial_selected else choices
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
return super().update(value)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
def restart_space():
|
| 139 |
API.restart_space(repo_id=REPO_ID)
|
| 140 |
|
|
|
|
| 225 |
|
| 226 |
|
| 227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
| 229 |
+
# """Initialize the subgraph leaderboard with grouped column selection by benchmark."""
|
| 230 |
# if dataframe is None or dataframe.empty:
|
| 231 |
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 232 |
|
| 233 |
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
| 234 |
|
| 235 |
+
# # Create groups of columns by benchmark
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
# benchmark_groups = []
|
| 237 |
+
|
| 238 |
+
# # For each benchmark in our TasksMib_Subgraph enum...
|
| 239 |
# for task in TasksMib_Subgraph:
|
| 240 |
# benchmark = task.value.benchmark
|
| 241 |
+
# # Get all valid columns for this benchmark's models
|
| 242 |
# benchmark_cols = [
|
| 243 |
+
# f"{benchmark}_{model}"
|
| 244 |
# for model in task.value.models
|
| 245 |
# if f"{benchmark}_{model}" in dataframe.columns
|
| 246 |
# ]
|
| 247 |
+
# if benchmark_cols: # Only add if we have valid columns
|
| 248 |
# benchmark_groups.append(benchmark_cols)
|
| 249 |
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
| 250 |
|
| 251 |
+
# # Create model groups as well
|
| 252 |
# model_groups = []
|
| 253 |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
| 254 |
|
| 255 |
+
# # For each unique model...
|
| 256 |
# for model in all_models:
|
| 257 |
+
# # Get all valid columns for this model across benchmarks
|
| 258 |
# model_cols = [
|
| 259 |
+
# f"{task.value.benchmark}_{model}"
|
| 260 |
# for task in TasksMib_Subgraph
|
| 261 |
# if model in task.value.models
|
| 262 |
# and f"{task.value.benchmark}_{model}" in dataframe.columns
|
| 263 |
# ]
|
| 264 |
+
# if model_cols: # Only add if we have valid columns
|
| 265 |
# model_groups.append(model_cols)
|
| 266 |
# print(f"\nModel group for {model}:", model_cols)
|
| 267 |
|
| 268 |
+
# # Combine all groups
|
| 269 |
# all_groups = benchmark_groups + model_groups
|
| 270 |
+
|
| 271 |
+
# # Flatten groups for default selection (show everything initially)
|
| 272 |
# all_columns = [col for group in all_groups for col in group]
|
| 273 |
+
# print("\nAll available columns:", all_columns)
|
|
|
|
|
|
|
| 274 |
|
| 275 |
# return Leaderboard(
|
| 276 |
+
# value=dataframe,
|
| 277 |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
| 278 |
# select_columns=SelectColumns(
|
| 279 |
+
# default_selection=all_columns, # Show all columns initially
|
| 280 |
# label="Select Results:"
|
| 281 |
# ),
|
| 282 |
# search_columns=["Method"],
|
|
|
|
| 285 |
# )
|
| 286 |
|
| 287 |
|
| 288 |
+
def init_leaderboard_mib_subgraph(dataframe, track):
|
| 289 |
+
"""Initialize the subgraph leaderboard with display names for better readability."""
|
| 290 |
+
if dataframe is None or dataframe.empty:
|
| 291 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 292 |
|
| 293 |
+
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
+
# First, create our display name mapping
|
| 296 |
+
# This is like creating a translation dictionary between internal names and display names
|
| 297 |
+
display_mapping = {}
|
| 298 |
+
for task in TasksMib_Subgraph:
|
| 299 |
+
for model in task.value.models:
|
| 300 |
+
field_name = f"{task.value.benchmark}_{model}"
|
| 301 |
+
display_name = f"{task.value.benchmark}({model})"
|
| 302 |
+
display_mapping[field_name] = display_name
|
| 303 |
|
| 304 |
+
# Now when creating benchmark groups, we'll use display names
|
| 305 |
+
benchmark_groups = []
|
| 306 |
+
for task in TasksMib_Subgraph:
|
| 307 |
+
benchmark = task.value.benchmark
|
| 308 |
+
benchmark_cols = [
|
| 309 |
+
display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping
|
| 310 |
+
for model in task.value.models
|
| 311 |
+
if f"{benchmark}_{model}" in dataframe.columns
|
| 312 |
+
]
|
| 313 |
+
if benchmark_cols:
|
| 314 |
+
benchmark_groups.append(benchmark_cols)
|
| 315 |
+
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
| 316 |
+
|
| 317 |
+
# Similarly for model groups
|
| 318 |
+
model_groups = []
|
| 319 |
+
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
| 320 |
|
| 321 |
+
for model in all_models:
|
| 322 |
+
model_cols = [
|
| 323 |
+
display_mapping[f"{task.value.benchmark}_{model}"] # Use display name
|
| 324 |
+
for task in TasksMib_Subgraph
|
| 325 |
+
if model in task.value.models
|
| 326 |
+
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
| 327 |
+
]
|
| 328 |
+
if model_cols:
|
| 329 |
+
model_groups.append(model_cols)
|
| 330 |
+
print(f"\nModel group for {model}:", model_cols)
|
| 331 |
|
| 332 |
+
# Combine all groups using display names
|
| 333 |
+
all_groups = benchmark_groups + model_groups
|
| 334 |
+
all_columns = [col for group in all_groups for col in group]
|
| 335 |
+
|
| 336 |
+
# Important: We need to rename our DataFrame columns to match display names
|
| 337 |
+
renamed_df = dataframe.rename(columns=display_mapping)
|
| 338 |
+
|
| 339 |
+
# return Leaderboard(
|
| 340 |
+
# value=renamed_df, # Use DataFrame with display names
|
| 341 |
+
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
| 342 |
+
# select_columns=SelectColumns(
|
| 343 |
+
# default_selection=all_columns, # Now contains display names
|
| 344 |
+
# label="Select Results:"
|
| 345 |
+
# ),
|
| 346 |
+
# search_columns=["Method"],
|
| 347 |
+
# hide_columns=[],
|
| 348 |
+
# interactive=False,
|
| 349 |
+
# )
|
| 350 |
+
# Complete column groups for both benchmarks and models
|
| 351 |
+
column_groups = {
|
| 352 |
+
# Benchmark groups
|
| 353 |
+
"Benchmark group for ioi": ["ioi_gpt2", "ioi_qwen2_5", "ioi_gemma2", "ioi_llama3"],
|
| 354 |
+
"Benchmark group for mcqa": ["mcqa_qwen2_5", "mcqa_gemma2", "mcqa_llama3"],
|
| 355 |
+
"Benchmark group for arithmetic_addition": ["arithmetic_addition_llama3"],
|
| 356 |
+
"Benchmark group for arithmetic_subtraction": ["arithmetic_subtraction_llama3"],
|
| 357 |
+
"Benchmark group for arc_easy": ["arc_easy_gemma2", "arc_easy_llama3"],
|
| 358 |
+
"Benchmark group for arc_challenge": ["arc_challenge_llama3"],
|
| 359 |
+
|
| 360 |
+
# Model groups
|
| 361 |
+
"Model group for qwen2_5": ["ioi_qwen2_5", "mcqa_qwen2_5"],
|
| 362 |
+
"Model group for gpt2": ["ioi_gpt2"],
|
| 363 |
+
"Model group for gemma2": ["ioi_gemma2", "mcqa_gemma2", "arc_easy_gemma2"],
|
| 364 |
+
"Model group for llama3": [
|
| 365 |
+
"ioi_llama3",
|
| 366 |
+
"mcqa_llama3",
|
| 367 |
+
"arithmetic_addition_llama3",
|
| 368 |
+
"arithmetic_subtraction_llama3",
|
| 369 |
+
"arc_easy_llama3",
|
| 370 |
+
"arc_challenge_llama3"
|
| 371 |
+
]
|
| 372 |
+
}
|
| 373 |
|
| 374 |
+
# # Complete mappings for more readable display names
|
| 375 |
+
# mappings = {
|
| 376 |
+
# # IOI benchmark mappings
|
| 377 |
+
# "ioi_llama3": "IOI (LLaMA-3)",
|
| 378 |
+
# "ioi_qwen2_5": "IOI (Qwen-2.5)",
|
| 379 |
+
# "ioi_gpt2": "IOI (GPT-2)",
|
| 380 |
+
# "ioi_gemma2": "IOI (Gemma-2)",
|
| 381 |
+
|
| 382 |
+
# # MCQA benchmark mappings
|
| 383 |
+
# "mcqa_llama3": "MCQA (LLaMA-3)",
|
| 384 |
+
# "mcqa_qwen2_5": "MCQA (Qwen-2.5)",
|
| 385 |
+
# "mcqa_gemma2": "MCQA (Gemma-2)",
|
| 386 |
+
|
| 387 |
+
# # Arithmetic benchmark mappings
|
| 388 |
+
# "arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)",
|
| 389 |
+
# "arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)",
|
| 390 |
+
|
| 391 |
+
# # ARC benchmark mappings
|
| 392 |
+
# "arc_easy_llama3": "ARC Easy (LLaMA-3)",
|
| 393 |
+
# "arc_easy_gemma2": "ARC Easy (Gemma-2)",
|
| 394 |
+
# "arc_challenge_llama3": "ARC Challenge (LLaMA-3)",
|
| 395 |
+
|
| 396 |
+
# # Other columns
|
| 397 |
+
# "eval_name": "Evaluation Name",
|
| 398 |
+
# "Method": "Method",
|
| 399 |
+
# "Average": "Average Score"
|
| 400 |
+
# }
|
| 401 |
+
mappings = {}
|
| 402 |
+
|
| 403 |
+
# Create SmartSelectColumns instance
|
| 404 |
smart_columns = SmartSelectColumns(
|
| 405 |
+
column_groups=column_groups,
|
| 406 |
column_mapping=mappings,
|
| 407 |
+
initial_selected=["Method", "Average"]
|
|
|
|
| 408 |
)
|
| 409 |
|
| 410 |
+
# Create Leaderboard directly
|
| 411 |
+
leaderboard = Leaderboard(
|
| 412 |
value=renamed_df,
|
| 413 |
+
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
| 414 |
select_columns=smart_columns,
|
| 415 |
search_columns=["Method"],
|
| 416 |
hide_columns=[],
|
|
|
|
| 418 |
)
|
| 419 |
|
| 420 |
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
|
| 425 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
| 426 |
# """Initialize the subgraph leaderboard with group-based column selection."""
|
| 427 |
# if dataframe is None or dataframe.empty:
|
custom-select-columns.py
CHANGED
|
@@ -287,25 +287,21 @@ def initialize_leaderboard(df: pd.DataFrame, column_class: Any,
|
|
| 287 |
Returns:
|
| 288 |
Configured Leaderboard instance
|
| 289 |
"""
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
column_mapping=mappings,
|
| 297 |
-
initial_selected=initial_columns,
|
| 298 |
-
multiselect=True
|
| 299 |
-
)
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
|
| 310 |
# Example usage
|
| 311 |
if __name__ == "__main__":
|
|
@@ -321,7 +317,7 @@ if __name__ == "__main__":
|
|
| 321 |
# Define filters and mappings
|
| 322 |
filters = {
|
| 323 |
"IOI Metrics": ["ioi"],
|
| 324 |
-
"
|
| 325 |
}
|
| 326 |
|
| 327 |
mappings = {
|
|
@@ -341,5 +337,289 @@ if __name__ == "__main__":
|
|
| 341 |
mappings=mappings,
|
| 342 |
initial_columns=["Method", "IOI Score (Type 1)"]
|
| 343 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
Returns:
|
| 288 |
Configured Leaderboard instance
|
| 289 |
"""
|
| 290 |
+
|
| 291 |
+
# Define filters and mappings
|
| 292 |
+
filters = {
|
| 293 |
+
"IOI Metrics": ["ioi"],
|
| 294 |
+
"Performance Metrics": ["performance"]
|
| 295 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
+
mappings = {
|
| 298 |
+
"ioi_score_1": "IOI Score (Type 1)",
|
| 299 |
+
"ioi_score_2": "IOI Score (Type 2)",
|
| 300 |
+
"other_metric": "Other Metric",
|
| 301 |
+
"performance_1": "Performance Metric 1"
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
|
| 305 |
|
| 306 |
# Example usage
|
| 307 |
if __name__ == "__main__":
|
|
|
|
| 317 |
# Define filters and mappings
|
| 318 |
filters = {
|
| 319 |
"IOI Metrics": ["ioi"],
|
| 320 |
+
"gemma2.5": ["gemma2_5`"]
|
| 321 |
}
|
| 322 |
|
| 323 |
mappings = {
|
|
|
|
| 337 |
mappings=mappings,
|
| 338 |
initial_columns=["Method", "IOI Score (Type 1)"]
|
| 339 |
)
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
# Create renamed DataFrame with display names
|
| 343 |
+
renamed_df = df.rename(columns=mappings)
|
| 344 |
+
|
| 345 |
+
initial_columns=["Method", "IOI Score (Type 1)"]
|
| 346 |
+
initial_columns=?
|
| 347 |
+
|
| 348 |
+
# Initialize SmartSelectColumns
|
| 349 |
+
smart_columns = SmartSelectColumns(
|
| 350 |
+
column_filters=filters,
|
| 351 |
+
column_mapping=mappings,
|
| 352 |
+
initial_selected=initial_columns,
|
| 353 |
+
multiselect=True
|
| 354 |
+
)
|
| 355 |
+
column_class=None
|
| 356 |
+
|
| 357 |
+
return gr.Leaderboard(
|
| 358 |
+
value=renamed_df,
|
| 359 |
+
datatype=[c.type for c in fields(column_class)],
|
| 360 |
+
select_columns=smart_columns,
|
| 361 |
+
search_columns=["Method"],
|
| 362 |
+
hide_columns=[],
|
| 363 |
+
interactive=False
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
demo.launch()
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
from gradio_leaderboard import SelectColumns, Leaderboard
|
| 405 |
+
import pandas as pd
|
| 406 |
+
from typing import List, Dict, Union, Optional, Any
|
| 407 |
+
from dataclasses import fields
|
| 408 |
+
|
| 409 |
+
class SmartSelectColumns(SelectColumns):
|
| 410 |
+
"""
|
| 411 |
+
Enhanced SelectColumns component for gradio_leaderboard with explicit column grouping.
|
| 412 |
+
"""
|
| 413 |
+
def __init__(
|
| 414 |
+
self,
|
| 415 |
+
column_groups: Optional[Dict[str, List[str]]] = None,
|
| 416 |
+
column_mapping: Optional[Dict[str, str]] = None,
|
| 417 |
+
initial_selected: Optional[List[str]] = None,
|
| 418 |
+
**kwargs
|
| 419 |
+
):
|
| 420 |
+
"""
|
| 421 |
+
Initialize SmartSelectColumns with enhanced functionality.
|
| 422 |
+
|
| 423 |
+
Args:
|
| 424 |
+
column_groups: Dict mapping group names to lists of columns in that group
|
| 425 |
+
column_mapping: Dict mapping actual column names to display names
|
| 426 |
+
initial_selected: List of columns to show initially
|
| 427 |
+
"""
|
| 428 |
+
super().__init__(**kwargs)
|
| 429 |
+
self.column_groups = column_groups or {}
|
| 430 |
+
self.column_mapping = column_mapping or {}
|
| 431 |
+
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
|
| 432 |
+
self.initial_selected = initial_selected or []
|
| 433 |
+
|
| 434 |
+
def preprocess_value(self, x: List[str]) -> List[str]:
|
| 435 |
+
"""Transform selected display names back to actual column names."""
|
| 436 |
+
return [self.reverse_mapping.get(col, col) for col in x]
|
| 437 |
+
|
| 438 |
+
def postprocess_value(self, y: List[str]) -> List[str]:
|
| 439 |
+
"""Transform actual column names to display names."""
|
| 440 |
+
return [self.column_mapping.get(col, col) for col in y]
|
| 441 |
+
|
| 442 |
+
def update(
|
| 443 |
+
self,
|
| 444 |
+
value: Union[pd.DataFrame, Dict[str, List[str]], Any]
|
| 445 |
+
) -> Dict:
|
| 446 |
+
"""Update component with new values."""
|
| 447 |
+
if isinstance(value, pd.DataFrame):
|
| 448 |
+
# Get all column names and convert to display names
|
| 449 |
+
choices = [self.column_mapping.get(col, col) for col in value.columns]
|
| 450 |
+
|
| 451 |
+
# Use initial selection or default columns
|
| 452 |
+
selected = self.initial_selected if self.initial_selected else choices
|
| 453 |
+
|
| 454 |
+
# Convert column groups to use display names
|
| 455 |
+
filtered_cols = {}
|
| 456 |
+
for group_name, columns in self.column_groups.items():
|
| 457 |
+
filtered_cols[group_name] = [
|
| 458 |
+
self.column_mapping.get(col, col)
|
| 459 |
+
for col in columns
|
| 460 |
+
if col in value.columns
|
| 461 |
+
]
|
| 462 |
+
|
| 463 |
+
return {
|
| 464 |
+
"choices": choices,
|
| 465 |
+
"value": selected,
|
| 466 |
+
"filtered_cols": filtered_cols
|
| 467 |
+
}
|
| 468 |
|
| 469 |
+
# Handle fields object
|
| 470 |
+
if hasattr(value, '__dataclass_fields__'):
|
| 471 |
+
field_names = [field.name for field in fields(value)]
|
| 472 |
+
choices = [self.column_mapping.get(name, name) for name in field_names]
|
| 473 |
+
return {
|
| 474 |
+
"choices": choices,
|
| 475 |
+
"value": self.initial_selected if self.initial_selected else choices
|
| 476 |
+
}
|
| 477 |
+
|
| 478 |
+
return super().update(value)
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
# Example usage
|
| 482 |
+
if __name__ == "__main__":
|
| 483 |
+
# Sample DataFrame
|
| 484 |
+
# df = pd.DataFrame({
|
| 485 |
+
# "eval_name": ["test1", "test2", "test3"],
|
| 486 |
+
# "Method": ["method1", "method2", "method3"],
|
| 487 |
+
# "ioi_llama3": [0.1, 0.2, 0.3],
|
| 488 |
+
# "ioi_qwen2_5": [0.4, 0.5, 0.6],
|
| 489 |
+
# "ioi_gpt2": [0.7, 0.8, 0.9],
|
| 490 |
+
# "mcqa_llama3": [0.2, 0.3, 0.4],
|
| 491 |
+
# "Average": [0.35, 0.45, 0.55]
|
| 492 |
+
# })
|
| 493 |
+
|
| 494 |
+
# Complete column groups for both benchmarks and models
|
| 495 |
+
column_groups = {
|
| 496 |
+
# Benchmark groups
|
| 497 |
+
"Benchmark group for ioi": ["ioi_gpt2", "ioi_qwen2_5", "ioi_gemma2", "ioi_llama3"],
|
| 498 |
+
"Benchmark group for mcqa": ["mcqa_qwen2_5", "mcqa_gemma2", "mcqa_llama3"],
|
| 499 |
+
"Benchmark group for arithmetic_addition": ["arithmetic_addition_llama3"],
|
| 500 |
+
"Benchmark group for arithmetic_subtraction": ["arithmetic_subtraction_llama3"],
|
| 501 |
+
"Benchmark group for arc_easy": ["arc_easy_gemma2", "arc_easy_llama3"],
|
| 502 |
+
"Benchmark group for arc_challenge": ["arc_challenge_llama3"],
|
| 503 |
+
|
| 504 |
+
# Model groups
|
| 505 |
+
"Model group for qwen2_5": ["ioi_qwen2_5", "mcqa_qwen2_5"],
|
| 506 |
+
"Model group for gpt2": ["ioi_gpt2"],
|
| 507 |
+
"Model group for gemma2": ["ioi_gemma2", "mcqa_gemma2", "arc_easy_gemma2"],
|
| 508 |
+
"Model group for llama3": [
|
| 509 |
+
"ioi_llama3",
|
| 510 |
+
"mcqa_llama3",
|
| 511 |
+
"arithmetic_addition_llama3",
|
| 512 |
+
"arithmetic_subtraction_llama3",
|
| 513 |
+
"arc_easy_llama3",
|
| 514 |
+
"arc_challenge_llama3"
|
| 515 |
+
]
|
| 516 |
+
}
|
| 517 |
+
|
| 518 |
+
# Complete mappings for more readable display names
|
| 519 |
+
mappings = {
|
| 520 |
+
# IOI benchmark mappings
|
| 521 |
+
"ioi_llama3": "IOI (LLaMA-3)",
|
| 522 |
+
"ioi_qwen2_5": "IOI (Qwen-2.5)",
|
| 523 |
+
"ioi_gpt2": "IOI (GPT-2)",
|
| 524 |
+
"ioi_gemma2": "IOI (Gemma-2)",
|
| 525 |
+
|
| 526 |
+
# MCQA benchmark mappings
|
| 527 |
+
"mcqa_llama3": "MCQA (LLaMA-3)",
|
| 528 |
+
"mcqa_qwen2_5": "MCQA (Qwen-2.5)",
|
| 529 |
+
"mcqa_gemma2": "MCQA (Gemma-2)",
|
| 530 |
+
|
| 531 |
+
# Arithmetic benchmark mappings
|
| 532 |
+
"arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)",
|
| 533 |
+
"arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)",
|
| 534 |
+
|
| 535 |
+
# ARC benchmark mappings
|
| 536 |
+
"arc_easy_llama3": "ARC Easy (LLaMA-3)",
|
| 537 |
+
"arc_easy_gemma2": "ARC Easy (Gemma-2)",
|
| 538 |
+
"arc_challenge_llama3": "ARC Challenge (LLaMA-3)",
|
| 539 |
+
|
| 540 |
+
# Other columns
|
| 541 |
+
"eval_name": "Evaluation Name",
|
| 542 |
+
"Method": "Method",
|
| 543 |
+
"Average": "Average Score"
|
| 544 |
+
}
|
| 545 |
+
|
| 546 |
+
# Create SmartSelectColumns instance
|
| 547 |
+
smart_columns = SmartSelectColumns(
|
| 548 |
+
column_groups=column_groups,
|
| 549 |
+
column_mapping=mappings,
|
| 550 |
+
initial_selected=["Method", "Average"]
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
# Create Leaderboard directly
|
| 554 |
+
leaderboard = Leaderboard(
|
| 555 |
+
value=df,
|
| 556 |
+
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
| 557 |
+
select_columns=smart_columns,
|
| 558 |
+
search_columns=["Method"],
|
| 559 |
+
hide_columns=[],
|
| 560 |
+
interactive=False
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
Debugging DataFrame columns: ['eval_name', 'Method', 'ioi_llama3', 'ioi_qwen2_5', 'ioi_gpt2', 'ioi_gemma2', 'mcqa_llama3', 'mcqa_qwen2_5', 'mcqa_gemma2', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_easy_gemma2', 'arc_challenge_llama3', 'Average']
|
| 596 |
+
|
| 597 |
+
Benchmark group for ioi: ['ioi_gpt2', 'ioi_qwen2_5', 'ioi_gemma2', 'ioi_llama3']
|
| 598 |
+
|
| 599 |
+
Benchmark group for mcqa: ['mcqa_qwen2_5', 'mcqa_gemma2', 'mcqa_llama3']
|
| 600 |
+
|
| 601 |
+
Benchmark group for arithmetic_addition: ['arithmetic_addition_llama3']
|
| 602 |
+
|
| 603 |
+
Benchmark group for arithmetic_subtraction: ['arithmetic_subtraction_llama3']
|
| 604 |
+
|
| 605 |
+
Benchmark group for arc_easy: ['arc_easy_gemma2', 'arc_easy_llama3']
|
| 606 |
+
|
| 607 |
+
Benchmark group for arc_challenge: ['arc_challenge_llama3']
|
| 608 |
+
|
| 609 |
+
Model group for qwen2_5: ['ioi_qwen2_5', 'mcqa_qwen2_5']
|
| 610 |
+
|
| 611 |
+
Model group for gpt2: ['ioi_gpt2']
|
| 612 |
+
|
| 613 |
+
Model group for gemma2: ['ioi_gemma2', 'mcqa_gemma2', 'arc_easy_gemma2']
|
| 614 |
+
|
| 615 |
+
Model group for llama3: ['ioi_llama3', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_challenge_llama3']
|
| 616 |
+
|
| 617 |
+
All available columns: ['ioi_gpt2', 'ioi_qwen2_5', 'ioi_gemma2', 'ioi_llama3', 'mcqa_qwen2_5', 'mcqa_gemma2', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_gemma2', 'arc_easy_llama3', 'arc_challenge_llama3', 'ioi_qwen2_5', 'mcqa_qwen2_5', 'ioi_gpt2', 'ioi_gemma2', 'mcqa_gemma2', 'arc_easy_gemma2', 'ioi_llama3', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_challenge_llama3']
|
| 618 |
+
* Running on local URL: http://0.0.0.0:7860
|
| 619 |
+
/usr/local/lib/python3.10/site-packages/gradio/blocks.py:2634: UserWarning: Setting share=True is not supported on Hugging Face Spaces
|
| 620 |
+
warnings.warn(
|
| 621 |
+
|
| 622 |
+
To create a public link, set `share=True` in `launch()`.
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
|