Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| from typing import List, Dict, Union, Optional | |
| class SmartSelectColumns(gr.SelectColumns): | |
| """ | |
| Enhanced SelectColumns component that supports substring matching and column mapping. | |
| Inherits from gr.SelectColumns but adds additional filtering capabilities. | |
| """ | |
| def __init__( | |
| self, | |
| *args, | |
| column_filters: Optional[Dict[str, List[str]]] = None, | |
| column_mapping: Optional[Dict[str, str]] = None, | |
| **kwargs | |
| ): | |
| """ | |
| Initialize the SmartSelectColumns component. | |
| Args: | |
| column_filters: Dict mapping filter names to lists of substrings to match | |
| column_mapping: Dict mapping display names to actual column names | |
| *args, **kwargs: Arguments passed to parent SelectColumns | |
| """ | |
| super().__init__(*args, **kwargs) | |
| self.column_filters = column_filters or {} | |
| self.column_mapping = column_mapping or {} | |
| def preprocess(self, x: List[str]) -> List[str]: | |
| """Transform selected display names back to actual column names.""" | |
| if self.column_mapping: | |
| reverse_mapping = {v: k for k, v in self.column_mapping.items()} | |
| return [reverse_mapping.get(col, col) for col in x] | |
| return x | |
| def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]: | |
| """ | |
| Get columns filtered by substring matches. | |
| Args: | |
| df: Input DataFrame | |
| Returns: | |
| Dict mapping filter names to lists of matching columns | |
| """ | |
| filtered_cols = {} | |
| for filter_name, substrings in self.column_filters.items(): | |
| matching_cols = [] | |
| for col in df.columns: | |
| if any(substr.lower() in col.lower() for substr in substrings): | |
| matching_cols.append(col) | |
| filtered_cols[filter_name] = matching_cols | |
| return filtered_cols | |
| def update( | |
| self, | |
| value: Union[pd.DataFrame, Dict[str, List[str]]], | |
| interactive: Optional[bool] = None | |
| ) -> Dict: | |
| """ | |
| Update the component with new values. | |
| Args: | |
| value: Either a DataFrame or dict of predefined column groups | |
| interactive: Whether the component should be interactive | |
| Returns: | |
| Dict containing the update configuration | |
| """ | |
| if isinstance(value, pd.DataFrame): | |
| # Get filtered column groups | |
| filtered_cols = self.get_filtered_columns(value) | |
| # Create display names for columns if mapping exists | |
| choices = list(value.columns) | |
| if self.column_mapping: | |
| choices = [self.column_mapping.get(col, col) for col in choices] | |
| return { | |
| "choices": choices, | |
| "filtered_cols": filtered_cols, | |
| "interactive": interactive if interactive is not None else self.interactive | |
| } | |
| return super().update(value, interactive) | |
| # Example usage | |
| if __name__ == "__main__": | |
| df = pd.DataFrame({ | |
| "ioi_score_1": [1, 2, 3], | |
| "ioi_score_2": [4, 5, 6], | |
| "other_metric": [7, 8, 9], | |
| "performance_1": [10, 11, 12] | |
| }) | |
| # Define filters and mappings | |
| column_filters = { | |
| "IOI Metrics": ["ioi"], | |
| "Performance Metrics": ["performance"] | |
| } | |
| column_mapping = { | |
| "ioi_score_1": "IOI Score (Type 1)", | |
| "ioi_score_2": "IOI Score (Type 2)", | |
| "other_metric": "Other Metric", | |
| "performance_1": "Performance Metric 1" | |
| } | |
| # Create interface | |
| with gr.Blocks() as demo: | |
| select_cols = SmartSelectColumns( | |
| column_filters=column_filters, | |
| column_mapping=column_mapping, | |
| multiselect=True | |
| ) | |
| # Update component with DataFrame | |
| select_cols.update(df) | |
| demo.launch() | |
| import gradio as gr | |
| import pandas as pd | |
| from typing import List, Dict, Union, Optional, Any | |
| from dataclasses import fields | |
| class SmartSelectColumns(gr.SelectColumns): | |
| """ | |
| Enhanced SelectColumns component for Gradio Leaderboard with smart filtering and mapping capabilities. | |
| """ | |
| def __init__( | |
| self, | |
| column_filters: Optional[Dict[str, List[str]]] = None, | |
| column_mapping: Optional[Dict[str, str]] = None, | |
| initial_selected: Optional[List[str]] = None, | |
| *args, | |
| **kwargs | |
| ): | |
| """ | |
| Initialize SmartSelectColumns with enhanced functionality. | |
| Args: | |
| column_filters: Dict mapping filter names to lists of substrings to match | |
| column_mapping: Dict mapping actual column names to display names | |
| initial_selected: List of column names to be initially selected | |
| *args, **kwargs: Additional arguments passed to parent SelectColumns | |
| """ | |
| super().__init__(*args, **kwargs) | |
| self.column_filters = column_filters or {} | |
| self.column_mapping = column_mapping or {} | |
| self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {} | |
| self.initial_selected = initial_selected or [] | |
| def preprocess(self, x: List[str]) -> List[str]: | |
| """ | |
| Transform selected display names back to actual column names. | |
| Args: | |
| x: List of selected display names | |
| Returns: | |
| List of actual column names | |
| """ | |
| return [self.reverse_mapping.get(col, col) for col in x] | |
| def postprocess(self, y: List[str]) -> List[str]: | |
| """ | |
| Transform actual column names to display names. | |
| Args: | |
| y: List of actual column names | |
| Returns: | |
| List of display names | |
| """ | |
| return [self.column_mapping.get(col, col) for col in y] | |
| def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]: | |
| """ | |
| Get columns filtered by substring matches. | |
| Args: | |
| df: Input DataFrame | |
| Returns: | |
| Dict mapping filter names to lists of matching display names | |
| """ | |
| filtered_cols = {} | |
| for filter_name, substrings in self.column_filters.items(): | |
| matching_cols = [] | |
| for col in df.columns: | |
| if any(substr.lower() in col.lower() for substr in substrings): | |
| display_name = self.column_mapping.get(col, col) | |
| matching_cols.append(display_name) | |
| filtered_cols[filter_name] = matching_cols | |
| return filtered_cols | |
| def update( | |
| self, | |
| value: Union[pd.DataFrame, Dict[str, List[str]], Any], | |
| interactive: Optional[bool] = None | |
| ) -> Dict: | |
| """ | |
| Update component with new values, supporting DataFrame fields. | |
| Args: | |
| value: DataFrame, dict of columns, or fields object | |
| interactive: Whether component should be interactive | |
| Returns: | |
| Dict containing update configuration | |
| """ | |
| if isinstance(value, pd.DataFrame): | |
| filtered_cols = self.get_filtered_columns(value) | |
| choices = [self.column_mapping.get(col, col) for col in value.columns] | |
| # Set initial selection if provided | |
| value = self.initial_selected if self.initial_selected else choices | |
| return { | |
| "choices": choices, | |
| "value": value, | |
| "filtered_cols": filtered_cols, | |
| "interactive": interactive if interactive is not None else self.interactive | |
| } | |
| # Handle fields object (e.g., from dataclass) | |
| if hasattr(value, '__dataclass_fields__'): | |
| field_names = [field.name for field in fields(value)] | |
| choices = [self.column_mapping.get(name, name) for name in field_names] | |
| return { | |
| "choices": choices, | |
| "value": self.initial_selected if self.initial_selected else choices, | |
| "interactive": interactive if interactive is not None else self.interactive | |
| } | |
| return super().update(value, interactive) | |
| def initialize_leaderboard(df: pd.DataFrame, column_class: Any, | |
| filters: Dict[str, List[str]], | |
| mappings: Dict[str, str], | |
| initial_columns: Optional[List[str]] = None) -> gr.Leaderboard: | |
| """ | |
| Initialize a Gradio Leaderboard with SmartSelectColumns. | |
| Args: | |
| df: Input DataFrame | |
| column_class: Class containing column definitions (e.g., AutoEvalColumn_mib_subgraph) | |
| filters: Column filters for substring matching | |
| mappings: Column name mappings (actual -> display) | |
| initial_columns: List of columns to show initially | |
| Returns: | |
| Configured Leaderboard instance | |
| """ | |
| # Define filters and mappings | |
| filters = { | |
| "IOI Metrics": ["ioi"], | |
| "Performance Metrics": ["performance"] | |
| } | |
| mappings = { | |
| "ioi_score_1": "IOI Score (Type 1)", | |
| "ioi_score_2": "IOI Score (Type 2)", | |
| "other_metric": "Other Metric", | |
| "performance_1": "Performance Metric 1" | |
| } | |
| # Example usage | |
| if __name__ == "__main__": | |
| # Sample data | |
| df = pd.DataFrame({ | |
| "ioi_score_1": [1, 2, 3], | |
| "ioi_score_2": [4, 5, 6], | |
| "other_metric": [7, 8, 9], | |
| "performance_1": [10, 11, 12], | |
| "Method": ["A", "B", "C"] | |
| }) | |
| # Define filters and mappings | |
| filters = { | |
| "IOI Metrics": ["ioi"], | |
| "gemma2.5": ["gemma2_5`"] | |
| } | |
| mappings = { | |
| "ioi_score_1": "IOI Score (Type 1)", | |
| "ioi_score_2": "IOI Score (Type 2)", | |
| "other_metric": "Other Metric", | |
| "performance_1": "Performance Metric 1" | |
| } | |
| # Create demo interface | |
| with gr.Blocks() as demo: | |
| # Initialize leaderboard with smart columns | |
| leaderboard = initialize_leaderboard( | |
| df=df, | |
| column_class=None, # Replace with your actual column class | |
| filters=filters, | |
| mappings=mappings, | |
| initial_columns=["Method", "IOI Score (Type 1)"] | |
| ) | |
| # Create renamed DataFrame with display names | |
| renamed_df = df.rename(columns=mappings) | |
| initial_columns=["Method", "IOI Score (Type 1)"] | |
| initial_columns=? | |
| # Initialize SmartSelectColumns | |
| smart_columns = SmartSelectColumns( | |
| column_filters=filters, | |
| column_mapping=mappings, | |
| initial_selected=initial_columns, | |
| multiselect=True | |
| ) | |
| column_class=None | |
| return gr.Leaderboard( | |
| value=renamed_df, | |
| datatype=[c.type for c in fields(column_class)], | |
| select_columns=smart_columns, | |
| search_columns=["Method"], | |
| hide_columns=[], | |
| interactive=False | |
| ) | |
| demo.launch() | |
| from gradio_leaderboard import SelectColumns, Leaderboard | |
| import pandas as pd | |
| from typing import List, Dict, Union, Optional, Any | |
| from dataclasses import fields | |
| class SmartSelectColumns(SelectColumns): | |
| """ | |
| Enhanced SelectColumns component for gradio_leaderboard with explicit column grouping. | |
| """ | |
| def __init__( | |
| self, | |
| column_groups: Optional[Dict[str, List[str]]] = None, | |
| column_mapping: Optional[Dict[str, str]] = None, | |
| initial_selected: Optional[List[str]] = None, | |
| **kwargs | |
| ): | |
| """ | |
| Initialize SmartSelectColumns with enhanced functionality. | |
| Args: | |
| column_groups: Dict mapping group names to lists of columns in that group | |
| column_mapping: Dict mapping actual column names to display names | |
| initial_selected: List of columns to show initially | |
| """ | |
| super().__init__(**kwargs) | |
| self.column_groups = column_groups or {} | |
| self.column_mapping = column_mapping or {} | |
| self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {} | |
| self.initial_selected = initial_selected or [] | |
| def preprocess_value(self, x: List[str]) -> List[str]: | |
| """Transform selected display names back to actual column names.""" | |
| return [self.reverse_mapping.get(col, col) for col in x] | |
| def postprocess_value(self, y: List[str]) -> List[str]: | |
| """Transform actual column names to display names.""" | |
| return [self.column_mapping.get(col, col) for col in y] | |
| def update( | |
| self, | |
| value: Union[pd.DataFrame, Dict[str, List[str]], Any] | |
| ) -> Dict: | |
| """Update component with new values.""" | |
| if isinstance(value, pd.DataFrame): | |
| # Get all column names and convert to display names | |
| choices = [self.column_mapping.get(col, col) for col in value.columns] | |
| # Use initial selection or default columns | |
| selected = self.initial_selected if self.initial_selected else choices | |
| # Convert column groups to use display names | |
| filtered_cols = {} | |
| for group_name, columns in self.column_groups.items(): | |
| filtered_cols[group_name] = [ | |
| self.column_mapping.get(col, col) | |
| for col in columns | |
| if col in value.columns | |
| ] | |
| return { | |
| "choices": choices, | |
| "value": selected, | |
| "filtered_cols": filtered_cols | |
| } | |
| # Handle fields object | |
| if hasattr(value, '__dataclass_fields__'): | |
| field_names = [field.name for field in fields(value)] | |
| choices = [self.column_mapping.get(name, name) for name in field_names] | |
| return { | |
| "choices": choices, | |
| "value": self.initial_selected if self.initial_selected else choices | |
| } | |
| return super().update(value) | |
| # Example usage | |
| if __name__ == "__main__": | |
| # Sample DataFrame | |
| # df = pd.DataFrame({ | |
| # "eval_name": ["test1", "test2", "test3"], | |
| # "Method": ["method1", "method2", "method3"], | |
| # "ioi_llama3": [0.1, 0.2, 0.3], | |
| # "ioi_qwen2_5": [0.4, 0.5, 0.6], | |
| # "ioi_gpt2": [0.7, 0.8, 0.9], | |
| # "mcqa_llama3": [0.2, 0.3, 0.4], | |
| # "Average": [0.35, 0.45, 0.55] | |
| # }) | |
| # Complete column groups for both benchmarks and models | |
| column_groups = { | |
| # Benchmark groups | |
| "Benchmark group for ioi": ["ioi_gpt2", "ioi_qwen2_5", "ioi_gemma2", "ioi_llama3"], | |
| "Benchmark group for mcqa": ["mcqa_qwen2_5", "mcqa_gemma2", "mcqa_llama3"], | |
| "Benchmark group for arithmetic_addition": ["arithmetic_addition_llama3"], | |
| "Benchmark group for arithmetic_subtraction": ["arithmetic_subtraction_llama3"], | |
| "Benchmark group for arc_easy": ["arc_easy_gemma2", "arc_easy_llama3"], | |
| "Benchmark group for arc_challenge": ["arc_challenge_llama3"], | |
| # Model groups | |
| "Model group for qwen2_5": ["ioi_qwen2_5", "mcqa_qwen2_5"], | |
| "Model group for gpt2": ["ioi_gpt2"], | |
| "Model group for gemma2": ["ioi_gemma2", "mcqa_gemma2", "arc_easy_gemma2"], | |
| "Model group for llama3": [ | |
| "ioi_llama3", | |
| "mcqa_llama3", | |
| "arithmetic_addition_llama3", | |
| "arithmetic_subtraction_llama3", | |
| "arc_easy_llama3", | |
| "arc_challenge_llama3" | |
| ] | |
| } | |
| # Complete mappings for more readable display names | |
| mappings = { | |
| # IOI benchmark mappings | |
| "ioi_llama3": "IOI (LLaMA-3)", | |
| "ioi_qwen2_5": "IOI (Qwen-2.5)", | |
| "ioi_gpt2": "IOI (GPT-2)", | |
| "ioi_gemma2": "IOI (Gemma-2)", | |
| # MCQA benchmark mappings | |
| "mcqa_llama3": "MCQA (LLaMA-3)", | |
| "mcqa_qwen2_5": "MCQA (Qwen-2.5)", | |
| "mcqa_gemma2": "MCQA (Gemma-2)", | |
| # Arithmetic benchmark mappings | |
| "arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)", | |
| "arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)", | |
| # ARC benchmark mappings | |
| "arc_easy_llama3": "ARC Easy (LLaMA-3)", | |
| "arc_easy_gemma2": "ARC Easy (Gemma-2)", | |
| "arc_challenge_llama3": "ARC Challenge (LLaMA-3)", | |
| # Other columns | |
| "eval_name": "Evaluation Name", | |
| "Method": "Method", | |
| "Average": "Average Score" | |
| } | |
| # Create SmartSelectColumns instance | |
| smart_columns = SmartSelectColumns( | |
| column_groups=column_groups, | |
| column_mapping=mappings, | |
| initial_selected=["Method", "Average"] | |
| ) | |
| # Create Leaderboard directly | |
| leaderboard = Leaderboard( | |
| value=df, | |
| datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
| select_columns=smart_columns, | |
| search_columns=["Method"], | |
| hide_columns=[], | |
| interactive=False | |
| ) | |
| from gradio_leaderboard import SelectColumns, Leaderboard | |
| import pandas as pd | |
| from typing import List, Dict, Union, Optional, Any | |
| from dataclasses import fields | |
| class SmartSelectColumns(SelectColumns): | |
| """ | |
| Enhanced SelectColumns component for gradio_leaderboard with dynamic column filtering. | |
| """ | |
| def __init__( | |
| self, | |
| benchmark_keywords: Optional[List[str]] = None, | |
| model_keywords: Optional[List[str]] = None, | |
| column_mapping: Optional[Dict[str, str]] = None, | |
| initial_selected: Optional[List[str]] = None, | |
| **kwargs | |
| ): | |
| """ | |
| Initialize SmartSelectColumns with dynamic filtering. | |
| Args: | |
| benchmark_keywords: List of benchmark names to filter by (e.g., ["ioi", "mcqa"]) | |
| model_keywords: List of model names to filter by (e.g., ["llama3", "qwen2_5"]) | |
| column_mapping: Dict mapping actual column names to display names | |
| initial_selected: List of columns to show initially | |
| """ | |
| super().__init__(**kwargs) | |
| self.benchmark_keywords = benchmark_keywords or [] | |
| self.model_keywords = model_keywords or [] | |
| self.column_mapping = column_mapping or {} | |
| self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {} | |
| self.initial_selected = initial_selected or [] | |
| def preprocess_value(self, x: List[str]) -> List[str]: | |
| """Transform selected display names back to actual column names.""" | |
| return [self.reverse_mapping.get(col, col) for col in x] | |
| def postprocess_value(self, y: List[str]) -> List[str]: | |
| """Transform actual column names to display names.""" | |
| return [self.column_mapping.get(col, col) for col in y] | |
| def get_filtered_groups(self, df: pd.DataFrame) -> Dict[str, List[str]]: | |
| """ | |
| Dynamically create column groups based on keywords. | |
| """ | |
| filtered_groups = {} | |
| # Create benchmark groups | |
| for benchmark in self.benchmark_keywords: | |
| matching_cols = [ | |
| col for col in df.columns | |
| if benchmark in col.lower() | |
| ] | |
| if matching_cols: | |
| group_name = f"Benchmark group for {benchmark}" | |
| filtered_groups[group_name] = [ | |
| self.column_mapping.get(col, col) | |
| for col in matching_cols | |
| ] | |
| # Create model groups | |
| for model in self.model_keywords: | |
| matching_cols = [ | |
| col for col in df.columns | |
| if model in col.lower() | |
| ] | |
| if matching_cols: | |
| group_name = f"Model group for {model}" | |
| filtered_groups[group_name] = [ | |
| self.column_mapping.get(col, col) | |
| for col in matching_cols | |
| ] | |
| return filtered_groups | |
| def update( | |
| self, | |
| value: Union[pd.DataFrame, Dict[str, List[str]], Any] | |
| ) -> Dict: | |
| """Update component with new values.""" | |
| if isinstance(value, pd.DataFrame): | |
| # Get all column names and convert to display names | |
| choices = [self.column_mapping.get(col, col) for col in value.columns] | |
| # Use initial selection or default columns | |
| selected = self.initial_selected if self.initial_selected else choices | |
| # Get dynamically filtered groups | |
| filtered_cols = self.get_filtered_groups(value) | |
| return { | |
| "choices": choices, | |
| "value": selected, | |
| "filtered_cols": filtered_cols | |
| } | |
| # Handle fields object | |
| if hasattr(value, '__dataclass_fields__'): | |
| field_names = [field.name for field in fields(value)] | |
| choices = [self.column_mapping.get(name, name) for name in field_names] | |
| return { | |
| "choices": choices, | |
| "value": self.initial_selected if self.initial_selected else choices | |
| } | |
| return super().update(value) | |
| # Example usage | |
| if __name__ == "__main__": | |
| # Sample DataFrame | |
| df = pd.DataFrame({ | |
| "eval_name": ["test1", "test2", "test3"], | |
| "Method": ["method1", "method2", "method3"], | |
| "ioi_llama3": [0.1, 0.2, 0.3], | |
| "ioi_qwen2_5": [0.4, 0.5, 0.6], | |
| "ioi_gpt2": [0.7, 0.8, 0.9], | |
| "mcqa_llama3": [0.2, 0.3, 0.4], | |
| "Average": [0.35, 0.45, 0.55] | |
| }) | |
| # Define keywords for filtering | |
| benchmark_keywords = ["ioi", "mcqa", "arithmetic_addition", "arithmetic_subtraction", "arc_easy", "arc_challenge"] | |
| model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"] | |
| # Optional: Define display names | |
| mappings = { | |
| "ioi_llama3": "IOI (LLaMA-3)", | |
| "ioi_qwen2_5": "IOI (Qwen-2.5)", | |
| "ioi_gpt2": "IOI (GPT-2)", | |
| "ioi_gemma2": "IOI (Gemma-2)", | |
| "mcqa_llama3": "MCQA (LLaMA-3)", | |
| "mcqa_qwen2_5": "MCQA (Qwen-2.5)", | |
| "mcqa_gemma2": "MCQA (Gemma-2)", | |
| "arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)", | |
| "arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)", | |
| "arc_easy_llama3": "ARC Easy (LLaMA-3)", | |
| "arc_easy_gemma2": "ARC Easy (Gemma-2)", | |
| "arc_challenge_llama3": "ARC Challenge (LLaMA-3)", | |
| "eval_name": "Evaluation Name", | |
| "Method": "Method", | |
| "Average": "Average Score" | |
| } | |
| # Create SmartSelectColumns instance | |
| smart_columns = SmartSelectColumns( | |
| benchmark_keywords=benchmark_keywords, | |
| model_keywords=model_keywords, | |
| column_mapping=mappings, | |
| initial_selected=["Method", "Average"] | |
| ) | |
| # Create Leaderboard | |
| leaderboard = Leaderboard( | |
| value=df, | |
| datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
| select_columns=smart_columns, | |
| search_columns=["Method"], | |
| hide_columns=[], | |
| interactive=False | |
| ) | |
| Debugging DataFrame columns: ['eval_name', 'Method', 'ioi_llama3', 'ioi_qwen2_5', 'ioi_gpt2', 'ioi_gemma2', 'mcqa_llama3', 'mcqa_qwen2_5', 'mcqa_gemma2', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_easy_gemma2', 'arc_challenge_llama3', 'Average'] | |
| Benchmark group for ioi: ['ioi_gpt2', 'ioi_qwen2_5', 'ioi_gemma2', 'ioi_llama3'] | |
| Benchmark group for mcqa: ['mcqa_qwen2_5', 'mcqa_gemma2', 'mcqa_llama3'] | |
| Benchmark group for arithmetic_addition: ['arithmetic_addition_llama3'] | |
| Benchmark group for arithmetic_subtraction: ['arithmetic_subtraction_llama3'] | |
| Benchmark group for arc_easy: ['arc_easy_gemma2', 'arc_easy_llama3'] | |
| Benchmark group for arc_challenge: ['arc_challenge_llama3'] | |
| Model group for qwen2_5: ['ioi_qwen2_5', 'mcqa_qwen2_5'] | |
| Model group for gpt2: ['ioi_gpt2'] | |
| Model group for gemma2: ['ioi_gemma2', 'mcqa_gemma2', 'arc_easy_gemma2'] | |
| Model group for llama3: ['ioi_llama3', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_challenge_llama3'] | |
| All available columns: ['ioi_gpt2', 'ioi_qwen2_5', 'ioi_gemma2', 'ioi_llama3', 'mcqa_qwen2_5', 'mcqa_gemma2', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_gemma2', 'arc_easy_llama3', 'arc_challenge_llama3', 'ioi_qwen2_5', 'mcqa_qwen2_5', 'ioi_gpt2', 'ioi_gemma2', 'mcqa_gemma2', 'arc_easy_gemma2', 'ioi_llama3', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_challenge_llama3'] | |
| * Running on local URL: http://0.0.0.0:7860 | |
| /usr/local/lib/python3.10/site-packages/gradio/blocks.py:2634: UserWarning: Setting share=True is not supported on Hugging Face Spaces | |
| warnings.warn( | |
| To create a public link, set `share=True` in `launch()`. | |