Spaces:
Runtime error
Runtime error
| import json | |
| import gzip | |
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from io import StringIO | |
| from dataclasses import dataclass, field | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| BENCHMARK_COLS_MULTIMODAL, | |
| BENCHMARK_COLS_MIB_SUBGRAPH, | |
| BENCHMARK_COLS_MIB_CAUSALGRAPH, | |
| COLS, | |
| COLS_MIB_SUBGRAPH, | |
| COLS_MIB_CAUSALGRAPH, | |
| COLS_MULTIMODAL, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| AutoEvalColumn_mib_subgraph, | |
| AutoEvalColumn_mib_causalgraph, | |
| fields, | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph | |
| from src.submission.submit import add_new_eval | |
| from src.about import TasksMib_Subgraph | |
| from gradio.events import Dependency | |
| class ModifiedLeaderboard(Leaderboard): | |
| """Extends Leaderboard to support substring-based column filtering""" | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # Process substring groups if they exist | |
| if (isinstance(self.select_columns_config, SelectColumns) and | |
| self.select_columns_config.substring_groups): | |
| self.process_substring_groups() | |
| def process_substring_groups(self): | |
| """Processes substring groups to add them to the selectable columns""" | |
| groups = self.select_columns_config.substring_groups | |
| if not groups: | |
| return | |
| # Create a mapping of group name to matching columns | |
| group_to_columns = {} | |
| for group_name, patterns in groups.groups.items(): | |
| matching_cols = set() | |
| for pattern in patterns: | |
| regex = re.compile(pattern.replace('*', '.*')) | |
| matching_cols.update( | |
| col for col in self.headers | |
| if regex.search(col) | |
| ) | |
| if matching_cols: | |
| group_to_columns[group_name] = list(matching_cols) | |
| # Add groups to the headers and update column selection logic | |
| self.group_to_columns = group_to_columns | |
| self.original_headers = self.headers.copy() | |
| # Add group names to the start of headers | |
| self.headers = list(group_to_columns.keys()) + self.original_headers | |
| # Update default selection to include groups | |
| if self.select_columns_config.default_selection: | |
| self.select_columns_config.default_selection = ( | |
| list(group_to_columns.keys()) + | |
| self.select_columns_config.default_selection | |
| ) | |
| def preprocess(self, payload): | |
| """Override preprocess to handle group selection""" | |
| df = super().preprocess(payload) | |
| # If we don't have substring groups, return normally | |
| if not hasattr(self, 'group_to_columns'): | |
| return df | |
| # Process group selections | |
| selected_columns = set() | |
| for column in payload.headers: | |
| if column in self.group_to_columns: | |
| # If a group is selected, add all its columns | |
| selected_columns.update(self.group_to_columns[column]) | |
| elif column in self.original_headers: | |
| # Add individually selected columns | |
| selected_columns.add(column) | |
| # Return DataFrame with only selected columns | |
| return df[list(selected_columns)] | |
| from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING | |
| from gradio.blocks import Block | |
| if TYPE_CHECKING: | |
| from gradio.components import Timer | |
| from gradio_leaderboard import SelectColumns, Leaderboard | |
| import pandas as pd | |
| from typing import List, Dict, Optional | |
| from dataclasses import fields | |
| class SmartSelectColumns(SelectColumns): | |
| """ | |
| Enhanced SelectColumns component matching exact original parameters. | |
| """ | |
| def __init__( | |
| self, | |
| benchmark_keywords: Optional[List[str]] = None, | |
| model_keywords: Optional[List[str]] = None, | |
| initial_selected: Optional[List[str]] = None, | |
| label: Optional[str] = None, | |
| show_label: bool = True, | |
| info: Optional[str] = None, | |
| allow: bool = True | |
| ): | |
| # Match exact parameters from working SelectColumns | |
| super().__init__( | |
| default_selection=initial_selected or [], | |
| cant_deselect=[], | |
| allow=allow, | |
| label=label, | |
| show_label=show_label, | |
| info=info | |
| ) | |
| self.benchmark_keywords = benchmark_keywords or [] | |
| self.model_keywords = model_keywords or [] | |
| # Store groups for later use | |
| self._groups = {} | |
| def get_filtered_groups(self, columns: List[str]) -> Dict[str, List[str]]: | |
| """Get column groups based on keywords.""" | |
| filtered_groups = {} | |
| # Add benchmark groups | |
| for benchmark in self.benchmark_keywords: | |
| matching_cols = [ | |
| col for col in columns | |
| if benchmark in col.lower() | |
| ] | |
| if matching_cols: | |
| filtered_groups[f"Benchmark group for {benchmark}"] = matching_cols | |
| # Add model groups | |
| for model in self.model_keywords: | |
| matching_cols = [ | |
| col for col in columns | |
| if model in col.lower() | |
| ] | |
| if matching_cols: | |
| filtered_groups[f"Model group for {model}"] = matching_cols | |
| self._groups = filtered_groups | |
| return filtered_groups | |
| import re | |
| @dataclass | |
| class SubstringSelectColumns(SelectColumns): | |
| """ | |
| Extends SelectColumns to support filtering columns by predefined substrings. | |
| When a substring is selected, all columns containing that substring will be selected. | |
| """ | |
| substring_groups: Dict[str, List[str]] = field(default_factory=dict) | |
| selected_substrings: List[str] = field(default_factory=list) | |
| def __post_init__(self): | |
| # Ensure default_selection is a list | |
| if self.default_selection is None: | |
| self.default_selection = [] | |
| # Build reverse mapping of column to substrings | |
| self.column_to_substrings = {} | |
| for substring, patterns in self.substring_groups.items(): | |
| for pattern in patterns: | |
| # Convert glob-style patterns to regex | |
| regex = re.compile(pattern.replace('*', '.*')) | |
| # Find matching columns in default_selection | |
| for col in self.default_selection: | |
| if regex.search(col): | |
| if col not in self.column_to_substrings: | |
| self.column_to_substrings[col] = [] | |
| self.column_to_substrings[col].append(substring) | |
| # Apply initial substring selections | |
| if self.selected_substrings: | |
| self.update_selection_from_substrings() | |
| def update_selection_from_substrings(self) -> List[str]: | |
| """ | |
| Updates the column selection based on selected substrings. | |
| Returns the new list of selected columns. | |
| """ | |
| selected_columns = self.cant_deselect.copy() | |
| # If no substrings selected, show all columns | |
| if not self.selected_substrings: | |
| selected_columns.extend([ | |
| col for col in self.default_selection | |
| if col not in self.cant_deselect | |
| ]) | |
| return selected_columns | |
| # Add columns that match any selected substring | |
| for col, substrings in self.column_to_substrings.items(): | |
| if any(s in self.selected_substrings for s in substrings): | |
| if col not in selected_columns: | |
| selected_columns.append(col) | |
| return selected_columns | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| ### Space initialisation | |
| try: | |
| # print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| # print(RESULTS_REPO_MIB_SUBGRAPH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| # print(RESULTS_REPO_MIB_CAUSALGRAPH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH) | |
| # LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH) | |
| # In app.py, modify the LEADERBOARD initialization | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph( | |
| EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, | |
| EVAL_REQUESTS_PATH, | |
| COLS_MIB_CAUSALGRAPH, | |
| BENCHMARK_COLS_MIB_CAUSALGRAPH | |
| ) | |
| # LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| # LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL) | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| # def init_leaderboard_mib_subgraph(dataframe, track): | |
| # # print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n") | |
| # if dataframe is None or dataframe.empty: | |
| # raise ValueError("Leaderboard DataFrame is empty or None.") | |
| # # filter for correct track | |
| # # dataframe = dataframe.loc[dataframe["Track"] == track] | |
| # # print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n") | |
| # return Leaderboard( | |
| def init_leaderboard_mib_subgraph(dataframe, track): | |
| """Initialize the subgraph leaderboard with display names for better readability.""" | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| print("\nDebugging DataFrame columns:", dataframe.columns.tolist()) | |
| # First, create our display name mapping | |
| # This is like creating a translation dictionary between internal names and display names | |
| model_name_mapping = { | |
| "qwen2_5": "Qwen-2.5", | |
| "gpt2": "GPT-2", | |
| "gemma2": "Gemma-2", | |
| "llama3": "Llama-3.1" | |
| } | |
| benchmark_mapping = { | |
| "ioi": "IOI", | |
| "mcqa": "MCQA", | |
| "arithmetic_addition": "Arithmetic (+)", | |
| "arithmetic_subtraction": "Arithmetic (-)", | |
| "arc_easy": "ARC (Easy)", | |
| "arc_challenge": "ARC (Challenge)" | |
| } | |
| display_mapping = {} | |
| for task in TasksMib_Subgraph: | |
| for model in task.value.models: | |
| field_name = f"{task.value.benchmark}_{model}" | |
| display_name = f"{benchmark_mapping[task.value.benchmark]} - {model_name_mapping[model]}" | |
| display_mapping[field_name] = display_name | |
| # Now when creating benchmark groups, we'll use display names | |
| benchmark_groups = [] | |
| for task in TasksMib_Subgraph: | |
| benchmark = task.value.benchmark | |
| benchmark_cols = [ | |
| display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping | |
| for model in task.value.models | |
| if f"{benchmark}_{model}" in dataframe.columns | |
| ] | |
| if benchmark_cols: | |
| benchmark_groups.append(benchmark_cols) | |
| print(f"\nBenchmark group for {benchmark}:", benchmark_cols) | |
| # Similarly for model groups | |
| model_groups = [] | |
| all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models)) | |
| for model in all_models: | |
| model_cols = [ | |
| display_mapping[f"{task.value.benchmark}_{model}"] # Use display name | |
| for task in TasksMib_Subgraph | |
| if model in task.value.models | |
| and f"{task.value.benchmark}_{model}" in dataframe.columns | |
| ] | |
| if model_cols: | |
| model_groups.append(model_cols) | |
| print(f"\nModel group for {model}:", model_cols) | |
| # Combine all groups using display names | |
| all_groups = benchmark_groups + model_groups | |
| all_columns = [col for group in all_groups for col in group] | |
| # Important: We need to rename our DataFrame columns to match display names | |
| renamed_df = dataframe.rename(columns=display_mapping) | |
| # all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default] | |
| # all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph)] | |
| all_columns = renamed_df.columns.tolist() | |
| print(benchmark_groups) | |
| print(model_groups) | |
| filter_groups = {"ioi": "*IOI*", | |
| "llama": "*Llama*"} | |
| # Original code | |
| return ModifiedLeaderboard( | |
| value=renamed_df, # Use DataFrame with display names | |
| datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
| select_columns=SubstringSelectColumns( | |
| substring_groups=filter_groups, | |
| default_selection=all_columns, # Now contains display names | |
| label="Filter Results:", | |
| allow=True | |
| ), | |
| search_columns=["Method"], | |
| hide_columns=[], | |
| interactive=False, | |
| ) | |
| # # Complete column groups for both benchmarks and models | |
| # # Define keywords for filtering | |
| # benchmark_keywords = ["ioi", "mcqa", "arithmetic_addition", "arithmetic_subtraction", "arc_easy", "arc_challenge"] | |
| # model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"] | |
| # # Optional: Define display names | |
| # mappings = { | |
| # "ioi_llama3": "IOI (LLaMA-3)", | |
| # "ioi_qwen2_5": "IOI (Qwen-2.5)", | |
| # "ioi_gpt2": "IOI (GPT-2)", | |
| # "ioi_gemma2": "IOI (Gemma-2)", | |
| # "mcqa_llama3": "MCQA (LLaMA-3)", | |
| # "mcqa_qwen2_5": "MCQA (Qwen-2.5)", | |
| # "mcqa_gemma2": "MCQA (Gemma-2)", | |
| # "arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)", | |
| # "arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)", | |
| # "arc_easy_llama3": "ARC Easy (LLaMA-3)", | |
| # "arc_easy_gemma2": "ARC Easy (Gemma-2)", | |
| # "arc_challenge_llama3": "ARC Challenge (LLaMA-3)", | |
| # "eval_name": "Evaluation Name", | |
| # "Method": "Method", | |
| # "Average": "Average Score" | |
| # } | |
| # # mappings = {} | |
| # # Create SmartSelectColumns instance | |
| # smart_columns = SmartSelectColumns( | |
| # benchmark_keywords=benchmark_keywords, | |
| # model_keywords=model_keywords, | |
| # column_mapping=mappings, | |
| # initial_selected=["Method", "Average"] | |
| # ) | |
| # print("\nDebugging DataFrame columns:", renamed_df.columns.tolist()) | |
| # # Create Leaderboard | |
| # leaderboard = Leaderboard( | |
| # value=renamed_df, | |
| # datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
| # select_columns=smart_columns, | |
| # search_columns=["Method"], | |
| # hide_columns=[], | |
| # interactive=False | |
| # ) | |
| # print(f"Successfully created leaderboard.") | |
| # return leaderboard | |
| # print("\nDebugging DataFrame columns:", dataframe.columns.tolist()) | |
| # # Define simple keywords for filtering | |
| # benchmark_keywords = ["ioi", "mcqa", "arithmetic", "arc"] | |
| # model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"] | |
| # # Create SmartSelectColumns instance with exact same parameters as working version | |
| # smart_columns = SmartSelectColumns( | |
| # benchmark_keywords=benchmark_keywords, | |
| # model_keywords=model_keywords, | |
| # initial_selected=["Method", "Average"], | |
| # allow=True, | |
| # label=None, | |
| # show_label=True, | |
| # info=None | |
| # ) | |
| # try: | |
| # print("\nCreating leaderboard...") | |
| # # Get groups before creating leaderboard | |
| # smart_columns.get_filtered_groups(dataframe.columns) | |
| # leaderboard = Leaderboard( | |
| # value=dataframe, | |
| # datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
| # select_columns=smart_columns, | |
| # search_columns=["Method"], | |
| # hide_columns=[], | |
| # interactive=False | |
| # ) | |
| # print("Leaderboard created successfully") | |
| # return leaderboard | |
| # except Exception as e: | |
| # print("Error creating leaderboard:", str(e)) | |
| # raise | |
| # def init_leaderboard_mib_subgraph(dataframe, track): | |
| # """Initialize the subgraph leaderboard with group-based column selection.""" | |
| # if dataframe is None or dataframe.empty: | |
| # raise ValueError("Leaderboard DataFrame is empty or None.") | |
| # print("\nDebugging DataFrame columns:", dataframe.columns.tolist()) | |
| # # Create selection mapping for benchmark groups | |
| # selection_mapping = {} | |
| # # Create benchmark groups with descriptive names | |
| # for task in TasksMib_Subgraph: | |
| # benchmark = task.value.benchmark | |
| # # Get all columns for this benchmark's models | |
| # benchmark_cols = [ | |
| # f"{benchmark}_{model}" | |
| # for model in task.value.models | |
| # if f"{benchmark}_{model}" in dataframe.columns | |
| # ] | |
| # if benchmark_cols: | |
| # # Use a descriptive group name as the key | |
| # group_name = f"Benchmark: {benchmark.upper()}" | |
| # selection_mapping[group_name] = benchmark_cols | |
| # print(f"\n{group_name} maps to:", benchmark_cols) | |
| # # Create model groups with descriptive names | |
| # all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models)) | |
| # for model in all_models: | |
| # # Get all columns for this model across benchmarks | |
| # model_cols = [ | |
| # f"{task.value.benchmark}_{model}" | |
| # for task in TasksMib_Subgraph | |
| # if model in task.value.models | |
| # and f"{task.value.benchmark}_{model}" in dataframe.columns | |
| # ] | |
| # if model_cols: | |
| # # Use a descriptive group name as the key | |
| # group_name = f"Model: {model}" | |
| # selection_mapping[group_name] = model_cols | |
| # print(f"\n{group_name} maps to:", model_cols) | |
| # # The selection options are the group names | |
| # selection_options = list(selection_mapping.keys()) | |
| # print("\nSelection options:", selection_options) | |
| # return Leaderboard( | |
| def init_leaderboard_mib_causalgraph(dataframe, track): | |
| # print("Debugging column issues:") | |
| # print("\nActual DataFrame columns:") | |
| # print(dataframe.columns.tolist()) | |
| # Create only necessary columns | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)], | |
| select_columns=SelectColumns( | |
| default_selection=["Method"], # Start with just Method column | |
| cant_deselect=["Method"], # Method column should always be visible | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=["Method"], | |
| hide_columns=[], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ) | |
| def init_leaderboard(dataframe, track): | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| # filter for correct track | |
| dataframe = dataframe.loc[dataframe["Track"] == track] | |
| # print(f"\n\n\n dataframe is {dataframe}\n\n\n") | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(AutoEvalColumn)], | |
| select_columns=SelectColumns( | |
| default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
| cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=[AutoEvalColumn.model.name], | |
| hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ) | |
| def process_json(temp_file): | |
| if temp_file is None: | |
| return {} | |
| # Handle file upload | |
| try: | |
| file_path = temp_file.name | |
| if file_path.endswith('.gz'): | |
| with gzip.open(file_path, 'rt') as f: | |
| data = json.load(f) | |
| else: | |
| with open(file_path, 'r') as f: | |
| data = json.load(f) | |
| except Exception as e: | |
| raise gr.Error(f"Error processing file: {str(e)}") | |
| gr.Markdown("Upload successful!") | |
| return data | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| # with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0): | |
| # leaderboard = init_leaderboard(LEADERBOARD_DF, "strict") | |
| # with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1): | |
| # leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small") | |
| # with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2): | |
| # leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal") | |
| # with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4): | |
| # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| # with gr.TabItem("πΆ Submit", elem_id="llm-benchmark-tab-table", id=5): | |
| # with gr.Column(): | |
| # with gr.Row(): | |
| # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| # with gr.TabItem("Subgraph", elem_id="subgraph", id=0): | |
| # leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph") | |
| with gr.TabItem("Subgraph", elem_id="subgraph", id=0): | |
| # Add description for filters | |
| gr.Markdown(""" | |
| ### Filtering Options | |
| Use the dropdown menus below to filter results by specific tasks or models. | |
| You can combine filters to see specific task-model combinations. | |
| """) | |
| leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph") | |
| print(f"Leaderboard is {leaderboard}") | |
| # Then modify the Causal Graph tab section | |
| with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1): | |
| with gr.Tabs() as causalgraph_tabs: | |
| with gr.TabItem("Detailed View", id=0): | |
| leaderboard_detailed = init_leaderboard_mib_causalgraph( | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, | |
| "Causal Graph" | |
| ) | |
| with gr.TabItem("Aggregated View", id=1): | |
| leaderboard_aggregated = init_leaderboard_mib_causalgraph( | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, | |
| "Causal Graph" | |
| ) | |
| with gr.TabItem("Intervention Averaged", id=2): | |
| leaderboard_averaged = init_leaderboard_mib_causalgraph( | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED, | |
| "Causal Graph" | |
| ) | |
| # with gr.Row(): | |
| # with gr.Accordion("π Citation", open=False): | |
| # citation_button = gr.Textbox( | |
| # value=CITATION_BUTTON_TEXT, | |
| # label=CITATION_BUTTON_LABEL, | |
| # lines=20, | |
| # elem_id="citation-button", | |
| # show_copy_button=True, | |
| # ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.launch(share=True, ssr_mode=False) |