Spaces:
Running
Running
| import json | |
| import gzip | |
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from io import StringIO | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| BENCHMARK_COLS_MULTIMODAL, | |
| BENCHMARK_COLS_MIB_SUBGRAPH, | |
| BENCHMARK_COLS_MIB_CAUSALGRAPH, | |
| COLS, | |
| COLS_MIB_SUBGRAPH, | |
| COLS_MIB_CAUSALGRAPH, | |
| COLS_MULTIMODAL, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| AutoEvalColumn_mib_subgraph, | |
| AutoEvalColumn_mib_causalgraph, | |
| fields, | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph | |
| from src.submission.submit import add_new_eval | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| ### Space initialisation | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(RESULTS_REPO_MIB_SUBGRAPH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(RESULTS_REPO_MIB_CAUSALGRAPH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH) | |
| # LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH) | |
| # In app.py, modify the LEADERBOARD initialization | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph( | |
| EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, | |
| EVAL_REQUESTS_PATH, | |
| COLS_MIB_CAUSALGRAPH, | |
| BENCHMARK_COLS_MIB_CAUSALGRAPH | |
| ) | |
| # LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| # LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL) | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| def init_leaderboard_mib_subgraph(dataframe, track): | |
| print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n") | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| # filter for correct track | |
| # dataframe = dataframe.loc[dataframe["Track"] == track] | |
| print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n") | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
| select_columns=SelectColumns( | |
| default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default], | |
| cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=["Method"], # Changed from AutoEvalColumn_mib_subgraph.model.name to "Method" | |
| hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ) | |
| def init_leaderboard_mib_causalgraph(dataframe, track): | |
| print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n") | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| # Print all columns for debugging | |
| print("Available columns in dataframe:", dataframe.columns.tolist()) | |
| print("Expected columns from AutoEvalColumn_mib_causalgraph:", [c.name for c in fields(AutoEvalColumn_mib_causalgraph) if not c.hidden]) | |
| # Remove this line since we don't need track filtering for causalgraph | |
| # dataframe = dataframe.loc[dataframe["Track"] == track] | |
| print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n") | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)], | |
| select_columns=SelectColumns( | |
| default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default], | |
| cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=["Method"], | |
| hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ) | |
| def init_leaderboard(dataframe, track): | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| # filter for correct track | |
| dataframe = dataframe.loc[dataframe["Track"] == track] | |
| # print(f"\n\n\n dataframe is {dataframe}\n\n\n") | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(AutoEvalColumn)], | |
| select_columns=SelectColumns( | |
| default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
| cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=[AutoEvalColumn.model.name], | |
| hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ) | |
| def process_json(temp_file): | |
| if temp_file is None: | |
| return {} | |
| # Handle file upload | |
| try: | |
| file_path = temp_file.name | |
| if file_path.endswith('.gz'): | |
| with gzip.open(file_path, 'rt') as f: | |
| data = json.load(f) | |
| else: | |
| with open(file_path, 'r') as f: | |
| data = json.load(f) | |
| except Exception as e: | |
| raise gr.Error(f"Error processing file: {str(e)}") | |
| gr.Markdown("Upload successful!") | |
| return data | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| # with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0): | |
| # leaderboard = init_leaderboard(LEADERBOARD_DF, "strict") | |
| # with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1): | |
| # leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small") | |
| # with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2): | |
| # leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal") | |
| # with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4): | |
| # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| # with gr.TabItem("πΆ Submit", elem_id="llm-benchmark-tab-table", id=5): | |
| # with gr.Column(): | |
| # with gr.Row(): | |
| # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("Subgraph", elem_id="subgraph", id=0): | |
| leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph") | |
| # Then modify the Causal Graph tab section | |
| with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1): | |
| with gr.Tabs() as causalgraph_tabs: | |
| with gr.TabItem("Detailed View", id=0): | |
| leaderboard_detailed = init_leaderboard_mib_causalgraph( | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, | |
| "Causal Graph" | |
| ) | |
| with gr.TabItem("Aggregated View", id=1): | |
| leaderboard_aggregated = init_leaderboard_mib_causalgraph( | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, | |
| "Causal Graph" | |
| ) | |
| with gr.TabItem("Intervention Averaged", id=2): | |
| leaderboard_averaged = init_leaderboard_mib_causalgraph( | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED, | |
| "Causal Graph" | |
| ) | |
| # with gr.Row(): | |
| # with gr.Accordion("π Citation", open=False): | |
| # citation_button = gr.Textbox( | |
| # value=CITATION_BUTTON_TEXT, | |
| # label=CITATION_BUTTON_LABEL, | |
| # lines=20, | |
| # elem_id="citation-button", | |
| # show_copy_button=True, | |
| # ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.launch(share=True, ssr_mode=False) | |