import streamlit as st import os import google.generativeai as genai # Streamlit Seite konfigurieren st.set_page_config( page_title="Gemini Chatbot mit Google Search", page_icon="šŸ¤–" ) genai.configure(api_key=os.environ["geminiapi"]) # Modell-Konfiguration generation_config = { "temperature": 0.4, "top_p": 0.95, "top_k": 40, "max_output_tokens": 8192, "response_mime_type": "text/plain", } grounding_config = genai.types.GroundingConfig( source_type=genai.types.GroundingSource.GOOGLE_SEARCH ) model = genai.GenerativeModel( model_name="gemini-2.0-flash-exp", generation_config=generation_config, grounding_config=grounding_config ) # Chat Session State initialisieren if "chat_session" not in st.session_state: st.session_state.chat_session = model.start_chat(history=[]) # UI Komponenten st.title("šŸ¤– Gemini Chatbot mit Google Search") user_input = st.text_input("Stelle deine Frage:", key="user_input") if user_input: # Prompt mit Sprachaufforderung kombinieren full_prompt = f"{user_input}\nAntworte immer auf Deutsch" # Antwort generieren response = st.session_state.chat_session.send_message(full_prompt) # Antwort extrahieren if response.candidates: response_text = response.candidates[0].content.parts[0].text else: response_text = "Keine Antwort erhalten" # Antwort anzeigen st.subheader("Antwort:") st.write(response_text) # Quellen anzeigen falls vorhanden if response.grounding_metadata: st.subheader("Quellen:") for source in response.grounding_metadata.sources: st.markdown(f"- [{source.url}]({source.url})") """ # Flask API from flask import Flask, jsonify import threading from flask_cors import CORS, cross_origin # Streamlit Frontend import streamlit as st import requests st.title("huhu") #st.text(data) data="ok" app = Flask(__name__) cors = CORS(app) @app.route('/endpoint', methods=['GET']) def my_endpoint(): #get data from GET Request data = request.args # Die Daten, die vom Client gesendet wurden #post request #data = request.form.get('variable') #print(prompt) #st.text(data) return "Daten erfolgreich empfangen!" #result = selenium(prompt) # Das Ergebnis an PHP zurückgeben #import streamlit as st #st.write(prompt) #prompting(prompt) #return prompt def run_flask(): app.run(port=5000) # Starte den Flask-Server in einem separaten Thread flask_thread = threading.Thread(target=run_flask) flask_thread.start() #response = requests.get('https://huggingface.co/spaces/mgokg/PandasAI:5000/api?data=huhu') #data = response.json() #st.write(response) # Zeigt die Daten in der Streamlit-OberflƤche an """