File size: 920 Bytes
5a7dfae
 
 
34ac6dd
 
fc3e1ac
6cf9cd1
666e576
 
5a7dfae
34ac6dd
e7386ba
8c76a3a
e468ed7
 
666e576
53b0d18
e468ed7
 
53b0d18
 
6cf9cd1
 
bb926e9
5a7dfae
 
bb926e9
61aec1f
5a7dfae
 
 
bb926e9
5a7dfae
2ae9d25
 
 
666e576
41810a3
89e8116
f964ec6
5040744
89e8116
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Flask API
from flask import Flask, jsonify
import threading
from flask_cors import CORS, cross_origin





app = Flask(__name__)
cors = CORS(app)
@app.route('/api', methods=['POST'])
def api_endpoint():
    #json_data = request.get_json()
    #return json_data
    prompt = request.form.get('variable')
    print(prompt)
    #result = selenium(prompt)
    # Das Ergebnis an PHP zurückgeben
    #import streamlit as st
    #st.write(prompt) 
    #prompting(prompt)
    #return prompt

def run_flask():
    app.run(port=5000)


# Starte den Flask-Server in einem separaten Thread
flask_thread = threading.Thread(target=run_flask)
flask_thread.start()

# Streamlit Frontend
import streamlit as st
import requests
st.title("huhu")


#response = requests.get('https://huggingface.co/spaces/mgokg/PandasAI:5000/api?data=huhu')
#data = response.json()

#st.write(response)  # Zeigt die Daten in der Streamlit-Oberfläche an