Create media_processing.py
Browse files- media_processing.py +1167 -0
media_processing.py
ADDED
@@ -0,0 +1,1167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import pytesseract
|
7 |
+
import requests
|
8 |
+
from urllib.parse import urlparse, urljoin
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
import html2text
|
11 |
+
import json
|
12 |
+
import time
|
13 |
+
import webbrowser
|
14 |
+
import urllib.parse
|
15 |
+
import copy
|
16 |
+
import html
|
17 |
+
import tempfile
|
18 |
+
import uuid
|
19 |
+
import datetime
|
20 |
+
import threading
|
21 |
+
import atexit
|
22 |
+
from huggingface_hub import HfApi
|
23 |
+
import gradio as gr
|
24 |
+
import subprocess
|
25 |
+
import re
|
26 |
+
|
27 |
+
# ---------------------------------------------------------------------------
|
28 |
+
# Video temp-file management (per-session tracking and cleanup)
|
29 |
+
# ---------------------------------------------------------------------------
|
30 |
+
VIDEO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_videos")
|
31 |
+
VIDEO_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours
|
32 |
+
_SESSION_VIDEO_FILES: Dict[str, List[str]] = {}
|
33 |
+
_VIDEO_FILES_LOCK = threading.Lock()
|
34 |
+
|
35 |
+
def _ensure_video_dir_exists() -> None:
|
36 |
+
try:
|
37 |
+
os.makedirs(VIDEO_TEMP_DIR, exist_ok=True)
|
38 |
+
except Exception:
|
39 |
+
pass
|
40 |
+
|
41 |
+
def _register_video_for_session(session_id: Optional[str], file_path: str) -> None:
|
42 |
+
if not session_id or not file_path:
|
43 |
+
return
|
44 |
+
with _VIDEO_FILES_LOCK:
|
45 |
+
if session_id not in _SESSION_VIDEO_FILES:
|
46 |
+
_SESSION_VIDEO_FILES[session_id] = []
|
47 |
+
_SESSION_VIDEO_FILES[session_id].append(file_path)
|
48 |
+
|
49 |
+
def cleanup_session_videos(session_id: Optional[str]) -> None:
|
50 |
+
if not session_id:
|
51 |
+
return
|
52 |
+
with _VIDEO_FILES_LOCK:
|
53 |
+
file_list = _SESSION_VIDEO_FILES.pop(session_id, [])
|
54 |
+
for path in file_list:
|
55 |
+
try:
|
56 |
+
if path and os.path.exists(path):
|
57 |
+
os.unlink(path)
|
58 |
+
except Exception:
|
59 |
+
# Best-effort cleanup
|
60 |
+
pass
|
61 |
+
|
62 |
+
def reap_old_videos(ttl_seconds: int = VIDEO_FILE_TTL_SECONDS) -> None:
|
63 |
+
"""Delete old video files in the temp directory based on modification time."""
|
64 |
+
try:
|
65 |
+
_ensure_video_dir_exists()
|
66 |
+
now_ts = time.time()
|
67 |
+
for name in os.listdir(VIDEO_TEMP_DIR):
|
68 |
+
path = os.path.join(VIDEO_TEMP_DIR, name)
|
69 |
+
try:
|
70 |
+
if not os.path.isfile(path):
|
71 |
+
continue
|
72 |
+
mtime = os.path.getmtime(path)
|
73 |
+
if now_ts - mtime > ttl_seconds:
|
74 |
+
os.unlink(path)
|
75 |
+
except Exception:
|
76 |
+
pass
|
77 |
+
except Exception:
|
78 |
+
# Temp dir might not exist or be accessible; ignore
|
79 |
+
pass
|
80 |
+
|
81 |
+
# ---------------------------------------------------------------------------
|
82 |
+
# Audio temp-file management (per-session tracking and cleanup)
|
83 |
+
# ---------------------------------------------------------------------------
|
84 |
+
AUDIO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_audio")
|
85 |
+
AUDIO_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours
|
86 |
+
_SESSION_AUDIO_FILES: Dict[str, List[str]] = {}
|
87 |
+
_AUDIO_FILES_LOCK = threading.Lock()
|
88 |
+
|
89 |
+
def _ensure_audio_dir_exists() -> None:
|
90 |
+
try:
|
91 |
+
os.makedirs(AUDIO_TEMP_DIR, exist_ok=True)
|
92 |
+
except Exception:
|
93 |
+
pass
|
94 |
+
|
95 |
+
def _register_audio_for_session(session_id: Optional[str], file_path: str) -> None:
|
96 |
+
if not session_id or not file_path:
|
97 |
+
return
|
98 |
+
with _AUDIO_FILES_LOCK:
|
99 |
+
if session_id not in _SESSION_AUDIO_FILES:
|
100 |
+
_SESSION_AUDIO_FILES[session_id] = []
|
101 |
+
_SESSION_AUDIO_FILES[session_id].append(file_path)
|
102 |
+
|
103 |
+
def cleanup_session_audio(session_id: Optional[str]) -> None:
|
104 |
+
if not session_id:
|
105 |
+
return
|
106 |
+
with _AUDIO_FILES_LOCK:
|
107 |
+
file_list = _SESSION_AUDIO_FILES.pop(session_id, [])
|
108 |
+
for path in file_list:
|
109 |
+
try:
|
110 |
+
if path and os.path.exists(path):
|
111 |
+
os.unlink(path)
|
112 |
+
except Exception:
|
113 |
+
pass
|
114 |
+
|
115 |
+
def reap_old_audio(ttl_seconds: int = AUDIO_FILE_TTL_SECONDS) -> None:
|
116 |
+
try:
|
117 |
+
_ensure_audio_dir_exists()
|
118 |
+
now_ts = time.time()
|
119 |
+
for name in os.listdir(AUDIO_TEMP_DIR):
|
120 |
+
path = os.path.join(AUDIO_TEMP_DIR, name)
|
121 |
+
try:
|
122 |
+
if not os.path.isfile(path):
|
123 |
+
continue
|
124 |
+
mtime = os.path.getmtime(path)
|
125 |
+
if now_ts - mtime > ttl_seconds:
|
126 |
+
os.unlink(path)
|
127 |
+
except Exception:
|
128 |
+
pass
|
129 |
+
except Exception:
|
130 |
+
pass
|
131 |
+
|
132 |
+
# ---------------------------------------------------------------------------
|
133 |
+
# General temp media file management (per-session tracking and cleanup)
|
134 |
+
# ---------------------------------------------------------------------------
|
135 |
+
MEDIA_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_media")
|
136 |
+
MEDIA_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours
|
137 |
+
_SESSION_MEDIA_FILES: Dict[str, List[str]] = {}
|
138 |
+
_MEDIA_FILES_LOCK = threading.Lock()
|
139 |
+
|
140 |
+
# Global dictionary to store temporary media files for the session
|
141 |
+
temp_media_files = {}
|
142 |
+
|
143 |
+
def _ensure_media_dir_exists() -> None:
|
144 |
+
"""Ensure the media temp directory exists."""
|
145 |
+
try:
|
146 |
+
os.makedirs(MEDIA_TEMP_DIR, exist_ok=True)
|
147 |
+
except Exception:
|
148 |
+
pass
|
149 |
+
|
150 |
+
def track_session_media_file(session_id: Optional[str], file_path: str) -> None:
|
151 |
+
"""Track a media file for session-based cleanup."""
|
152 |
+
if not session_id or not file_path:
|
153 |
+
return
|
154 |
+
with _MEDIA_FILES_LOCK:
|
155 |
+
if session_id not in _SESSION_MEDIA_FILES:
|
156 |
+
_SESSION_MEDIA_FILES[session_id] = []
|
157 |
+
_SESSION_MEDIA_FILES[session_id].append(file_path)
|
158 |
+
|
159 |
+
def cleanup_session_media(session_id: Optional[str]) -> None:
|
160 |
+
"""Clean up media files for a specific session."""
|
161 |
+
if not session_id:
|
162 |
+
return
|
163 |
+
with _MEDIA_FILES_LOCK:
|
164 |
+
files_to_clean = _SESSION_MEDIA_FILES.pop(session_id, [])
|
165 |
+
|
166 |
+
for path in files_to_clean:
|
167 |
+
try:
|
168 |
+
if path and os.path.exists(path):
|
169 |
+
os.unlink(path)
|
170 |
+
except Exception:
|
171 |
+
# Best-effort cleanup
|
172 |
+
pass
|
173 |
+
|
174 |
+
def reap_old_media(ttl_seconds: int = MEDIA_FILE_TTL_SECONDS) -> None:
|
175 |
+
"""Delete old media files in the temp directory based on modification time."""
|
176 |
+
try:
|
177 |
+
_ensure_media_dir_exists()
|
178 |
+
now_ts = time.time()
|
179 |
+
for name in os.listdir(MEDIA_TEMP_DIR):
|
180 |
+
path = os.path.join(MEDIA_TEMP_DIR, name)
|
181 |
+
if os.path.isfile(path):
|
182 |
+
try:
|
183 |
+
mtime = os.path.getmtime(path)
|
184 |
+
if (now_ts - mtime) > ttl_seconds:
|
185 |
+
os.unlink(path)
|
186 |
+
except Exception:
|
187 |
+
pass
|
188 |
+
except Exception:
|
189 |
+
# Temp dir might not exist or be accessible; ignore
|
190 |
+
pass
|
191 |
+
|
192 |
+
def cleanup_all_temp_media_on_startup() -> None:
|
193 |
+
"""Clean up all temporary media files on app startup."""
|
194 |
+
try:
|
195 |
+
# Clean up temp_media_files registry
|
196 |
+
temp_media_files.clear()
|
197 |
+
|
198 |
+
# Clean up actual files from disk (assume all are orphaned on startup)
|
199 |
+
_ensure_media_dir_exists()
|
200 |
+
for name in os.listdir(MEDIA_TEMP_DIR):
|
201 |
+
path = os.path.join(MEDIA_TEMP_DIR, name)
|
202 |
+
if os.path.isfile(path):
|
203 |
+
try:
|
204 |
+
os.unlink(path)
|
205 |
+
except Exception:
|
206 |
+
pass
|
207 |
+
|
208 |
+
# Clear session tracking
|
209 |
+
with _MEDIA_FILES_LOCK:
|
210 |
+
_SESSION_MEDIA_FILES.clear()
|
211 |
+
|
212 |
+
print("[StartupCleanup] Cleaned up orphaned temporary media files")
|
213 |
+
except Exception as e:
|
214 |
+
print(f"[StartupCleanup] Error during media cleanup: {str(e)}")
|
215 |
+
|
216 |
+
def cleanup_all_temp_media_on_shutdown() -> None:
|
217 |
+
"""Clean up all temporary media files on app shutdown."""
|
218 |
+
try:
|
219 |
+
print("[ShutdownCleanup] Cleaning up temporary media files...")
|
220 |
+
|
221 |
+
# Clean up temp_media_files registry and remove files
|
222 |
+
for file_id, file_info in temp_media_files.items():
|
223 |
+
try:
|
224 |
+
if os.path.exists(file_info['path']):
|
225 |
+
os.unlink(file_info['path'])
|
226 |
+
except Exception:
|
227 |
+
pass
|
228 |
+
temp_media_files.clear()
|
229 |
+
|
230 |
+
# Clean up all session files
|
231 |
+
with _MEDIA_FILES_LOCK:
|
232 |
+
for session_id, file_paths in _SESSION_MEDIA_FILES.items():
|
233 |
+
for path in file_paths:
|
234 |
+
try:
|
235 |
+
if path and os.path.exists(path):
|
236 |
+
os.unlink(path)
|
237 |
+
except Exception:
|
238 |
+
pass
|
239 |
+
_SESSION_MEDIA_FILES.clear()
|
240 |
+
|
241 |
+
print("[ShutdownCleanup] Temporary media cleanup completed")
|
242 |
+
except Exception as e:
|
243 |
+
print(f"[ShutdownCleanup] Error during cleanup: {str(e)}")
|
244 |
+
|
245 |
+
# Register shutdown cleanup handler
|
246 |
+
atexit.register(cleanup_all_temp_media_on_shutdown)
|
247 |
+
|
248 |
+
def create_temp_media_url(media_bytes: bytes, filename: str, media_type: str = "image", session_id: Optional[str] = None) -> str:
|
249 |
+
"""Create a temporary file and return a local URL for preview."""
|
250 |
+
try:
|
251 |
+
# Create unique filename with timestamp and UUID
|
252 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
253 |
+
unique_id = str(uuid.uuid4())[:8]
|
254 |
+
base_name, ext = os.path.splitext(filename)
|
255 |
+
unique_filename = f"{media_type}_{timestamp}_{unique_id}_{base_name}{ext}"
|
256 |
+
|
257 |
+
# Create temporary file in the dedicated directory
|
258 |
+
_ensure_media_dir_exists()
|
259 |
+
temp_path = os.path.join(MEDIA_TEMP_DIR, unique_filename)
|
260 |
+
|
261 |
+
# Write media bytes to temporary file
|
262 |
+
with open(temp_path, 'wb') as f:
|
263 |
+
f.write(media_bytes)
|
264 |
+
|
265 |
+
# Track file for session-based cleanup
|
266 |
+
if session_id:
|
267 |
+
track_session_media_file(session_id, temp_path)
|
268 |
+
|
269 |
+
# Store the file info for later upload
|
270 |
+
file_id = f"{media_type}_{unique_id}"
|
271 |
+
temp_media_files[file_id] = {
|
272 |
+
'path': temp_path,
|
273 |
+
'filename': filename,
|
274 |
+
'media_type': media_type,
|
275 |
+
'media_bytes': media_bytes
|
276 |
+
}
|
277 |
+
|
278 |
+
# Return file:// URL for preview
|
279 |
+
file_url = f"file://{temp_path}"
|
280 |
+
print(f"[TempMedia] Created temporary {media_type} file: {file_url}")
|
281 |
+
return file_url
|
282 |
+
|
283 |
+
except Exception as e:
|
284 |
+
print(f"[TempMedia] Failed to create temporary file: {str(e)}")
|
285 |
+
return f"Error creating temporary {media_type} file: {str(e)}"
|
286 |
+
|
287 |
+
def upload_media_to_hf(media_bytes: bytes, filename: str, media_type: str = "image", token: gr.OAuthToken | None = None, use_temp: bool = True) -> str:
|
288 |
+
"""Upload media file to user's Hugging Face account or create temporary file."""
|
289 |
+
try:
|
290 |
+
# If use_temp is True, create temporary file for preview
|
291 |
+
if use_temp:
|
292 |
+
return create_temp_media_url(media_bytes, filename, media_type)
|
293 |
+
|
294 |
+
# Otherwise, upload to Hugging Face for permanent URL
|
295 |
+
# Try to get token from OAuth first, then fall back to environment variable
|
296 |
+
hf_token = None
|
297 |
+
if token and token.token:
|
298 |
+
hf_token = token.token
|
299 |
+
else:
|
300 |
+
hf_token = os.getenv('HF_TOKEN')
|
301 |
+
|
302 |
+
if not hf_token:
|
303 |
+
return "Error: Please log in with your Hugging Face account to upload media, or set HF_TOKEN environment variable."
|
304 |
+
|
305 |
+
# Initialize HF API
|
306 |
+
api = HfApi(token=hf_token)
|
307 |
+
|
308 |
+
# Get current user info to determine username
|
309 |
+
try:
|
310 |
+
user_info = api.whoami()
|
311 |
+
username = user_info.get('name', 'unknown-user')
|
312 |
+
except Exception as e:
|
313 |
+
print(f"[HFUpload] Could not get user info: {e}")
|
314 |
+
username = 'anycoder-user'
|
315 |
+
|
316 |
+
# Create repository name for media storage
|
317 |
+
repo_name = f"{username}/anycoder-media"
|
318 |
+
|
319 |
+
# Try to create the repository if it doesn't exist
|
320 |
+
try:
|
321 |
+
api.create_repo(
|
322 |
+
repo_id=repo_name,
|
323 |
+
repo_type="dataset",
|
324 |
+
private=False,
|
325 |
+
exist_ok=True
|
326 |
+
)
|
327 |
+
print(f"[HFUpload] Repository {repo_name} ready")
|
328 |
+
except Exception as e:
|
329 |
+
print(f"[HFUpload] Repository creation/access issue: {e}")
|
330 |
+
# Continue anyway, repo might already exist
|
331 |
+
|
332 |
+
# Create unique filename with timestamp and UUID
|
333 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
334 |
+
unique_id = str(uuid.uuid4())[:8]
|
335 |
+
base_name, ext = os.path.splitext(filename)
|
336 |
+
unique_filename = f"{media_type}/{timestamp}_{unique_id}_{base_name}{ext}"
|
337 |
+
|
338 |
+
# Create temporary file for upload
|
339 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
340 |
+
temp_file.write(media_bytes)
|
341 |
+
temp_path = temp_file.name
|
342 |
+
|
343 |
+
try:
|
344 |
+
# Upload file to HF repository
|
345 |
+
api.upload_file(
|
346 |
+
path_or_fileobj=temp_path,
|
347 |
+
path_in_repo=unique_filename,
|
348 |
+
repo_id=repo_name,
|
349 |
+
repo_type="dataset",
|
350 |
+
commit_message=f"Upload {media_type} generated by AnyCoder"
|
351 |
+
)
|
352 |
+
|
353 |
+
# Generate permanent URL
|
354 |
+
permanent_url = f"https://huggingface.co/datasets/{repo_name}/resolve/main/{unique_filename}"
|
355 |
+
print(f"[HFUpload] Successfully uploaded {media_type} to {permanent_url}")
|
356 |
+
return permanent_url
|
357 |
+
|
358 |
+
finally:
|
359 |
+
# Clean up temporary file
|
360 |
+
try:
|
361 |
+
os.unlink(temp_path)
|
362 |
+
except Exception:
|
363 |
+
pass
|
364 |
+
|
365 |
+
except Exception as e:
|
366 |
+
print(f"[HFUpload] Upload failed: {str(e)}")
|
367 |
+
return f"Error uploading {media_type} to Hugging Face: {str(e)}"
|
368 |
+
|
369 |
+
def upload_temp_files_to_hf_and_replace_urls(html_content: str, token: gr.OAuthToken | None = None) -> str:
|
370 |
+
"""Upload all temporary media files to HF and replace their URLs in HTML content."""
|
371 |
+
try:
|
372 |
+
if not temp_media_files:
|
373 |
+
print("[DeployUpload] No temporary media files to upload")
|
374 |
+
return html_content
|
375 |
+
|
376 |
+
print(f"[DeployUpload] Uploading {len(temp_media_files)} temporary media files to HF")
|
377 |
+
updated_content = html_content
|
378 |
+
|
379 |
+
for file_id, file_info in temp_media_files.items():
|
380 |
+
try:
|
381 |
+
# Upload to HF with permanent URL
|
382 |
+
permanent_url = upload_media_to_hf(
|
383 |
+
file_info['media_bytes'],
|
384 |
+
file_info['filename'],
|
385 |
+
file_info['media_type'],
|
386 |
+
token,
|
387 |
+
use_temp=False # Force permanent upload
|
388 |
+
)
|
389 |
+
|
390 |
+
if not permanent_url.startswith("Error"):
|
391 |
+
# Replace the temporary file URL with permanent URL
|
392 |
+
temp_url = f"file://{file_info['path']}"
|
393 |
+
updated_content = updated_content.replace(temp_url, permanent_url)
|
394 |
+
print(f"[DeployUpload] Replaced {temp_url} with {permanent_url}")
|
395 |
+
else:
|
396 |
+
print(f"[DeployUpload] Failed to upload {file_id}: {permanent_url}")
|
397 |
+
|
398 |
+
except Exception as e:
|
399 |
+
print(f"[DeployUpload] Error uploading {file_id}: {str(e)}")
|
400 |
+
continue
|
401 |
+
|
402 |
+
# Clean up temporary files after upload
|
403 |
+
cleanup_temp_media_files()
|
404 |
+
|
405 |
+
return updated_content
|
406 |
+
|
407 |
+
except Exception as e:
|
408 |
+
print(f"[DeployUpload] Failed to upload temporary files: {str(e)}")
|
409 |
+
return html_content
|
410 |
+
|
411 |
+
def cleanup_temp_media_files():
|
412 |
+
"""Clean up temporary media files from disk and memory."""
|
413 |
+
try:
|
414 |
+
for file_id, file_info in temp_media_files.items():
|
415 |
+
try:
|
416 |
+
if os.path.exists(file_info['path']):
|
417 |
+
os.remove(file_info['path'])
|
418 |
+
print(f"[TempCleanup] Removed {file_info['path']}")
|
419 |
+
except Exception as e:
|
420 |
+
print(f"[TempCleanup] Failed to remove {file_info['path']}: {str(e)}")
|
421 |
+
|
422 |
+
# Clear the global dictionary
|
423 |
+
temp_media_files.clear()
|
424 |
+
print("[TempCleanup] Cleared temporary media files registry")
|
425 |
+
|
426 |
+
except Exception as e:
|
427 |
+
print(f"[TempCleanup] Error during cleanup: {str(e)}")
|
428 |
+
|
429 |
+
def generate_image_with_qwen(prompt: str, image_index: int = 0, token: gr.OAuthToken | None = None) -> str:
|
430 |
+
"""Generate image using Qwen image model via Hugging Face InferenceClient and upload to HF for permanent URL"""
|
431 |
+
try:
|
432 |
+
# Check if HF_TOKEN is available
|
433 |
+
if not os.getenv('HF_TOKEN'):
|
434 |
+
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
|
435 |
+
|
436 |
+
# Create InferenceClient for Qwen image generation
|
437 |
+
client = InferenceClient(
|
438 |
+
provider="auto",
|
439 |
+
api_key=os.getenv('HF_TOKEN'),
|
440 |
+
bill_to="huggingface",
|
441 |
+
)
|
442 |
+
|
443 |
+
# Generate image using Qwen/Qwen-Image model
|
444 |
+
image = client.text_to_image(
|
445 |
+
prompt,
|
446 |
+
model="Qwen/Qwen-Image",
|
447 |
+
)
|
448 |
+
|
449 |
+
# Resize image to reduce size while maintaining quality
|
450 |
+
max_size = 1024 # Increased size since we're not using data URIs
|
451 |
+
if image.width > max_size or image.height > max_size:
|
452 |
+
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
453 |
+
|
454 |
+
# Convert PIL Image to bytes for upload
|
455 |
+
import io
|
456 |
+
buffer = io.BytesIO()
|
457 |
+
# Save as JPEG with good quality since we're not embedding
|
458 |
+
image.convert('RGB').save(buffer, format='JPEG', quality=90, optimize=True)
|
459 |
+
image_bytes = buffer.getvalue()
|
460 |
+
|
461 |
+
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
462 |
+
filename = f"generated_image_{image_index}.jpg"
|
463 |
+
temp_url = upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True)
|
464 |
+
|
465 |
+
# Check if creation was successful
|
466 |
+
if temp_url.startswith("Error"):
|
467 |
+
return temp_url
|
468 |
+
|
469 |
+
# Return HTML img tag with temporary URL
|
470 |
+
return f'<img src="{temp_url}" alt="{prompt}" style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0;" loading="lazy" />'
|
471 |
+
|
472 |
+
except Exception as e:
|
473 |
+
print(f"Image generation error: {str(e)}")
|
474 |
+
return f"Error generating image: {str(e)}"
|
475 |
+
|
476 |
+
def generate_image_to_image(input_image_data, prompt: str, token: gr.OAuthToken | None = None) -> str:
|
477 |
+
"""Generate an image using image-to-image with Qwen-Image-Edit via Hugging Face InferenceClient."""
|
478 |
+
try:
|
479 |
+
# Check token
|
480 |
+
if not os.getenv('HF_TOKEN'):
|
481 |
+
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
|
482 |
+
|
483 |
+
# Prepare client
|
484 |
+
client = InferenceClient(
|
485 |
+
provider="auto",
|
486 |
+
api_key=os.getenv('HF_TOKEN'),
|
487 |
+
bill_to="huggingface",
|
488 |
+
)
|
489 |
+
|
490 |
+
# Normalize input image to bytes
|
491 |
+
import io
|
492 |
+
from PIL import Image
|
493 |
+
try:
|
494 |
+
import numpy as np
|
495 |
+
except Exception:
|
496 |
+
np = None
|
497 |
+
|
498 |
+
if hasattr(input_image_data, 'read'):
|
499 |
+
# File-like object
|
500 |
+
raw = input_image_data.read()
|
501 |
+
pil_image = Image.open(io.BytesIO(raw))
|
502 |
+
elif hasattr(input_image_data, 'mode') and hasattr(input_image_data, 'size'):
|
503 |
+
# PIL Image
|
504 |
+
pil_image = input_image_data
|
505 |
+
elif np is not None and isinstance(input_image_data, np.ndarray):
|
506 |
+
pil_image = Image.fromarray(input_image_data)
|
507 |
+
elif isinstance(input_image_data, (bytes, bytearray)):
|
508 |
+
pil_image = Image.open(io.BytesIO(input_image_data))
|
509 |
+
else:
|
510 |
+
# Fallback: try to convert via bytes
|
511 |
+
pil_image = Image.open(io.BytesIO(bytes(input_image_data)))
|
512 |
+
|
513 |
+
# Ensure RGB
|
514 |
+
if pil_image.mode != 'RGB':
|
515 |
+
pil_image = pil_image.convert('RGB')
|
516 |
+
|
517 |
+
# Resize input image to avoid request body size limits
|
518 |
+
max_input_size = 1024
|
519 |
+
if pil_image.width > max_input_size or pil_image.height > max_input_size:
|
520 |
+
pil_image.thumbnail((max_input_size, max_input_size), Image.Resampling.LANCZOS)
|
521 |
+
|
522 |
+
buf = io.BytesIO()
|
523 |
+
pil_image.save(buf, format='JPEG', quality=85, optimize=True)
|
524 |
+
input_bytes = buf.getvalue()
|
525 |
+
|
526 |
+
# Call image-to-image
|
527 |
+
image = client.image_to_image(
|
528 |
+
input_bytes,
|
529 |
+
prompt=prompt,
|
530 |
+
model="Qwen/Qwen-Image-Edit",
|
531 |
+
)
|
532 |
+
|
533 |
+
# Resize/optimize (larger since not using data URIs)
|
534 |
+
max_size = 1024
|
535 |
+
if image.width > max_size or image.height > max_size:
|
536 |
+
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
537 |
+
|
538 |
+
out_buf = io.BytesIO()
|
539 |
+
image.convert('RGB').save(out_buf, format='JPEG', quality=90, optimize=True)
|
540 |
+
image_bytes = out_buf.getvalue()
|
541 |
+
|
542 |
+
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
543 |
+
filename = "image_to_image_result.jpg"
|
544 |
+
temp_url = upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True)
|
545 |
+
|
546 |
+
# Check if creation was successful
|
547 |
+
if temp_url.startswith("Error"):
|
548 |
+
return temp_url
|
549 |
+
|
550 |
+
return f"<img src=\"{temp_url}\" alt=\"{prompt}\" style=\"max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0;\" loading=\"lazy\" />"
|
551 |
+
except Exception as e:
|
552 |
+
print(f"Image-to-image generation error: {str(e)}")
|
553 |
+
return f"Error generating image (image-to-image): {str(e)}"
|
554 |
+
|
555 |
+
def generate_video_from_image(input_image_data, prompt: str, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str:
|
556 |
+
"""Generate a video from an input image and prompt using Hugging Face InferenceClient."""
|
557 |
+
try:
|
558 |
+
print("[Image2Video] Starting video generation")
|
559 |
+
if not os.getenv('HF_TOKEN'):
|
560 |
+
print("[Image2Video] Missing HF_TOKEN")
|
561 |
+
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
|
562 |
+
|
563 |
+
# Prepare client
|
564 |
+
client = InferenceClient(
|
565 |
+
provider="auto",
|
566 |
+
api_key=os.getenv('HF_TOKEN'),
|
567 |
+
bill_to="huggingface",
|
568 |
+
)
|
569 |
+
print(f"[Image2Video] InferenceClient initialized (provider=auto)")
|
570 |
+
|
571 |
+
# Normalize input image to bytes, with downscale/compress to cap request size
|
572 |
+
import io
|
573 |
+
from PIL import Image
|
574 |
+
try:
|
575 |
+
import numpy as np
|
576 |
+
except Exception:
|
577 |
+
np = None
|
578 |
+
|
579 |
+
def _load_pil(img_like) -> Image.Image:
|
580 |
+
if hasattr(img_like, 'read'):
|
581 |
+
return Image.open(io.BytesIO(img_like.read()))
|
582 |
+
if hasattr(img_like, 'mode') and hasattr(img_like, 'size'):
|
583 |
+
return img_like
|
584 |
+
if np is not None and isinstance(img_like, np.ndarray):
|
585 |
+
return Image.fromarray(img_like)
|
586 |
+
if isinstance(img_like, (bytes, bytearray)):
|
587 |
+
return Image.open(io.BytesIO(img_like))
|
588 |
+
return Image.open(io.BytesIO(bytes(img_like)))
|
589 |
+
|
590 |
+
pil_image = _load_pil(input_image_data)
|
591 |
+
if pil_image.mode != 'RGB':
|
592 |
+
pil_image = pil_image.convert('RGB')
|
593 |
+
try:
|
594 |
+
print(f"[Image2Video] Input PIL image size={pil_image.size} mode={pil_image.mode}")
|
595 |
+
except Exception:
|
596 |
+
pass
|
597 |
+
|
598 |
+
# Progressive encode to keep payload under ~3.9MB (below 4MB limit)
|
599 |
+
MAX_BYTES = 3_900_000
|
600 |
+
max_dim = 1024 # initial cap on longest edge
|
601 |
+
quality = 90
|
602 |
+
|
603 |
+
def encode_current(pil: Image.Image, q: int) -> bytes:
|
604 |
+
tmp = io.BytesIO()
|
605 |
+
pil.save(tmp, format='JPEG', quality=q, optimize=True)
|
606 |
+
return tmp.getvalue()
|
607 |
+
|
608 |
+
# Downscale while the longest edge exceeds max_dim
|
609 |
+
while max(pil_image.size) > max_dim:
|
610 |
+
ratio = max_dim / float(max(pil_image.size))
|
611 |
+
new_size = (max(1, int(pil_image.size[0] * ratio)), max(1, int(pil_image.size[1] * ratio)))
|
612 |
+
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
|
613 |
+
|
614 |
+
encoded = encode_current(pil_image, quality)
|
615 |
+
# If still too big, iteratively reduce quality, then dimensions
|
616 |
+
while len(encoded) > MAX_BYTES and (quality > 40 or max(pil_image.size) > 640):
|
617 |
+
if quality > 40:
|
618 |
+
quality -= 10
|
619 |
+
else:
|
620 |
+
# reduce dims by 15% if already at low quality
|
621 |
+
new_w = max(1, int(pil_image.size[0] * 0.85))
|
622 |
+
new_h = max(1, int(pil_image.size[1] * 0.85))
|
623 |
+
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
624 |
+
encoded = encode_current(pil_image, quality)
|
625 |
+
|
626 |
+
input_bytes = encoded
|
627 |
+
|
628 |
+
# Call image-to-video; require method support
|
629 |
+
model_id = "Lightricks/LTX-Video-0.9.8-13B-distilled"
|
630 |
+
image_to_video_method = getattr(client, "image_to_video", None)
|
631 |
+
if not callable(image_to_video_method):
|
632 |
+
print("[Image2Video] InferenceClient.image_to_video not available in this huggingface_hub version")
|
633 |
+
return (
|
634 |
+
"Error generating video (image-to-video): Your installed huggingface_hub version "
|
635 |
+
"does not expose InferenceClient.image_to_video. Please upgrade with "
|
636 |
+
"`pip install -U huggingface_hub` and try again."
|
637 |
+
)
|
638 |
+
print(f"[Image2Video] Calling image_to_video with model={model_id}, prompt length={len(prompt or '')}")
|
639 |
+
video_bytes = image_to_video_method(
|
640 |
+
input_bytes,
|
641 |
+
prompt=prompt,
|
642 |
+
model=model_id,
|
643 |
+
)
|
644 |
+
print(f"[Image2Video] Received video bytes: {len(video_bytes) if hasattr(video_bytes, '__len__') else 'unknown length'}")
|
645 |
+
|
646 |
+
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
647 |
+
filename = "image_to_video_result.mp4"
|
648 |
+
temp_url = upload_media_to_hf(video_bytes, filename, "video", token, use_temp=True)
|
649 |
+
|
650 |
+
# Check if creation was successful
|
651 |
+
if temp_url.startswith("Error"):
|
652 |
+
return temp_url
|
653 |
+
|
654 |
+
video_html = (
|
655 |
+
f'<video controls autoplay muted loop playsinline '
|
656 |
+
f'style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0; display: block;" '
|
657 |
+
f'onloadstart="this.style.backgroundColor=\'#f0f0f0\'" '
|
658 |
+
f'onerror="this.style.display=\'none\'; console.error(\'Video failed to load\')">'
|
659 |
+
f'<source src="{temp_url}" type="video/mp4" />'
|
660 |
+
f'<p style="text-align: center; color: #666;">Your browser does not support the video tag.</p>'
|
661 |
+
f'</video>'
|
662 |
+
)
|
663 |
+
|
664 |
+
print(f"[Image2Video] Successfully generated video HTML tag with temporary URL: {temp_url}")
|
665 |
+
|
666 |
+
# Validate the generated video HTML
|
667 |
+
if not validate_video_html(video_html):
|
668 |
+
print("[Image2Video] Generated video HTML failed validation")
|
669 |
+
return "Error: Generated video HTML is malformed"
|
670 |
+
|
671 |
+
return video_html
|
672 |
+
except Exception as e:
|
673 |
+
import traceback
|
674 |
+
print("[Image2Video] Exception during generation:")
|
675 |
+
traceback.print_exc()
|
676 |
+
print(f"Image-to-video generation error: {str(e)}")
|
677 |
+
return f"Error generating video (image-to-video): {str(e)}"
|
678 |
+
|
679 |
+
def generate_video_from_text(prompt: str, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str:
|
680 |
+
"""Generate a video from a text prompt using Hugging Face InferenceClient."""
|
681 |
+
try:
|
682 |
+
print("[Text2Video] Starting video generation from text")
|
683 |
+
if not os.getenv('HF_TOKEN'):
|
684 |
+
print("[Text2Video] Missing HF_TOKEN")
|
685 |
+
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
|
686 |
+
|
687 |
+
client = InferenceClient(
|
688 |
+
provider="auto",
|
689 |
+
api_key=os.getenv('HF_TOKEN'),
|
690 |
+
bill_to="huggingface",
|
691 |
+
)
|
692 |
+
print("[Text2Video] InferenceClient initialized (provider=auto)")
|
693 |
+
|
694 |
+
# Ensure the client has text_to_video (newer huggingface_hub)
|
695 |
+
text_to_video_method = getattr(client, "text_to_video", None)
|
696 |
+
if not callable(text_to_video_method):
|
697 |
+
print("[Text2Video] InferenceClient.text_to_video not available in this huggingface_hub version")
|
698 |
+
return (
|
699 |
+
"Error generating video (text-to-video): Your installed huggingface_hub version "
|
700 |
+
"does not expose InferenceClient.text_to_video. Please upgrade with "
|
701 |
+
"`pip install -U huggingface_hub` and try again."
|
702 |
+
)
|
703 |
+
|
704 |
+
model_id = "Wan-AI/Wan2.2-T2V-A14B"
|
705 |
+
prompt_str = (prompt or "").strip()
|
706 |
+
print(f"[Text2Video] Calling text_to_video with model={model_id}, prompt length={len(prompt_str)}")
|
707 |
+
video_bytes = text_to_video_method(
|
708 |
+
prompt_str,
|
709 |
+
model=model_id,
|
710 |
+
)
|
711 |
+
print(f"[Text2Video] Received video bytes: {len(video_bytes) if hasattr(video_bytes, '__len__') else 'unknown length'}")
|
712 |
+
|
713 |
+
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
714 |
+
filename = "text_to_video_result.mp4"
|
715 |
+
temp_url = upload_media_to_hf(video_bytes, filename, "video", token, use_temp=True)
|
716 |
+
|
717 |
+
# Check if creation was successful
|
718 |
+
if temp_url.startswith("Error"):
|
719 |
+
return temp_url
|
720 |
+
|
721 |
+
video_html = (
|
722 |
+
f'<video controls autoplay muted loop playsinline '
|
723 |
+
f'style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0; display: block;" '
|
724 |
+
f'onloadstart="this.style.backgroundColor=\'#f0f0f0\'" '
|
725 |
+
f'onerror="this.style.display=\'none\'; console.error(\'Video failed to load\')">'
|
726 |
+
f'<source src="{temp_url}" type="video/mp4" />'
|
727 |
+
f'<p style="text-align: center; color: #666;">Your browser does not support the video tag.</p>'
|
728 |
+
f'</video>'
|
729 |
+
)
|
730 |
+
|
731 |
+
print(f"[Text2Video] Successfully generated video HTML tag with temporary URL: {temp_url}")
|
732 |
+
|
733 |
+
# Validate the generated video HTML
|
734 |
+
if not validate_video_html(video_html):
|
735 |
+
print("[Text2Video] Generated video HTML failed validation")
|
736 |
+
return "Error: Generated video HTML is malformed"
|
737 |
+
|
738 |
+
return video_html
|
739 |
+
except Exception as e:
|
740 |
+
import traceback
|
741 |
+
print("[Text2Video] Exception during generation:")
|
742 |
+
traceback.print_exc()
|
743 |
+
print(f"Text-to-video generation error: {str(e)}")
|
744 |
+
return f"Error generating video (text-to-video): {str(e)}"
|
745 |
+
|
746 |
+
def generate_music_from_text(prompt: str, music_length_ms: int = 30000, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str:
|
747 |
+
"""Generate music from a text prompt using ElevenLabs Music API and return an HTML <audio> tag."""
|
748 |
+
try:
|
749 |
+
api_key = os.getenv('ELEVENLABS_API_KEY')
|
750 |
+
if not api_key:
|
751 |
+
return "Error: ELEVENLABS_API_KEY environment variable is not set."
|
752 |
+
|
753 |
+
headers = {
|
754 |
+
'Content-Type': 'application/json',
|
755 |
+
'xi-api-key': api_key,
|
756 |
+
}
|
757 |
+
payload = {
|
758 |
+
'prompt': (prompt or 'Epic orchestral theme with soaring strings and powerful brass'),
|
759 |
+
'music_length_ms': int(music_length_ms) if music_length_ms else 30000,
|
760 |
+
}
|
761 |
+
|
762 |
+
resp = requests.post('https://api.elevenlabs.io/v1/music/compose', headers=headers, json=payload)
|
763 |
+
try:
|
764 |
+
resp.raise_for_status()
|
765 |
+
except Exception as e:
|
766 |
+
return f"Error generating music: {getattr(e, 'response', resp).text if hasattr(e, 'response') else resp.text}"
|
767 |
+
|
768 |
+
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
769 |
+
filename = "generated_music.mp3"
|
770 |
+
temp_url = upload_media_to_hf(resp.content, filename, "audio", token, use_temp=True)
|
771 |
+
|
772 |
+
# Check if creation was successful
|
773 |
+
if temp_url.startswith("Error"):
|
774 |
+
return temp_url
|
775 |
+
|
776 |
+
audio_html = (
|
777 |
+
"<div class=\"anycoder-music\" style=\"max-width:420px;margin:16px auto;padding:12px 16px;border:1px solid #e5e7eb;border-radius:12px;background:linear-gradient(180deg,#fafafa,#f3f4f6);box-shadow:0 2px 8px rgba(0,0,0,0.06)\">"
|
778 |
+
" <div style=\"font-size:13px;color:#374151;margin-bottom:8px;display:flex:align-items:center;gap:6px\">"
|
779 |
+
" <span>🎵 Generated music</span>"
|
780 |
+
" </div>"
|
781 |
+
f" <audio controls autoplay loop style=\"width:100%;outline:none;\">"
|
782 |
+
f" <source src=\"{temp_url}\" type=\"audio/mpeg\" />"
|
783 |
+
" Your browser does not support the audio element."
|
784 |
+
" </audio>"
|
785 |
+
"</div>"
|
786 |
+
)
|
787 |
+
|
788 |
+
print(f"[Music] Successfully generated music HTML tag with temporary URL: {temp_url}")
|
789 |
+
return audio_html
|
790 |
+
except Exception as e:
|
791 |
+
return f"Error generating music: {str(e)}"
|
792 |
+
|
793 |
+
def extract_image_prompts_from_text(text: str, num_images_needed: int = 1) -> list:
|
794 |
+
"""Extract image generation prompts from the full text based on number of images needed"""
|
795 |
+
# Use the entire text as the base prompt for image generation
|
796 |
+
# Clean up the text and create variations for the required number of images
|
797 |
+
|
798 |
+
# Clean the text
|
799 |
+
cleaned_text = text.strip()
|
800 |
+
if not cleaned_text:
|
801 |
+
return []
|
802 |
+
|
803 |
+
# Create variations of the prompt for the required number of images
|
804 |
+
prompts = []
|
805 |
+
|
806 |
+
# Generate exactly the number of images needed
|
807 |
+
for i in range(num_images_needed):
|
808 |
+
if i == 0:
|
809 |
+
# First image: Use the full prompt as-is
|
810 |
+
prompts.append(cleaned_text)
|
811 |
+
elif i == 1:
|
812 |
+
# Second image: Add "visual representation" to make it more image-focused
|
813 |
+
prompts.append(f"Visual representation of {cleaned_text}")
|
814 |
+
elif i == 2:
|
815 |
+
# Third image: Add "illustration" to create a different style
|
816 |
+
prompts.append(f"Illustration of {cleaned_text}")
|
817 |
+
else:
|
818 |
+
# For additional images, use different variations
|
819 |
+
variations = [
|
820 |
+
f"Digital art of {cleaned_text}",
|
821 |
+
f"Modern design of {cleaned_text}",
|
822 |
+
f"Professional illustration of {cleaned_text}",
|
823 |
+
f"Clean design of {cleaned_text}",
|
824 |
+
f"Beautiful visualization of {cleaned_text}",
|
825 |
+
f"Stylish representation of {cleaned_text}",
|
826 |
+
f"Contemporary design of {cleaned_text}",
|
827 |
+
f"Elegant illustration of {cleaned_text}"
|
828 |
+
]
|
829 |
+
variation_index = (i - 3) % len(variations)
|
830 |
+
prompts.append(variations[variation_index])
|
831 |
+
|
832 |
+
return prompts
|
833 |
+
|
834 |
+
def create_image_replacement_blocks(html_content: str, user_prompt: str) -> str:
|
835 |
+
"""Create search/replace blocks to replace placeholder images with generated Qwen images"""
|
836 |
+
if not user_prompt:
|
837 |
+
return ""
|
838 |
+
|
839 |
+
# Find existing image placeholders in the HTML first
|
840 |
+
import re
|
841 |
+
|
842 |
+
# Common patterns for placeholder images
|
843 |
+
placeholder_patterns = [
|
844 |
+
r'<img[^>]*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
|
845 |
+
r'<img[^>]*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
|
846 |
+
r'<img[^>]*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
|
847 |
+
r'<img[^>]*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
|
848 |
+
r'<img[^>]*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
849 |
+
r'<img[^>]*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
850 |
+
r'<img[^>]*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
851 |
+
r'<img[^>]*src=["\']data:image[^"\']*["\'][^>]*>', # Base64 images
|
852 |
+
r'<img[^>]*src=["\']#["\'][^>]*>', # Empty src
|
853 |
+
r'<img[^>]*src=["\']about:blank["\'][^>]*>', # About blank
|
854 |
+
]
|
855 |
+
|
856 |
+
# Find all placeholder images
|
857 |
+
placeholder_images = []
|
858 |
+
for pattern in placeholder_patterns:
|
859 |
+
matches = re.findall(pattern, html_content, re.IGNORECASE)
|
860 |
+
placeholder_images.extend(matches)
|
861 |
+
|
862 |
+
# Filter out HF URLs from placeholders (they are real generated content)
|
863 |
+
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
|
864 |
+
|
865 |
+
# If no placeholder images found, look for any img tags
|
866 |
+
if not placeholder_images:
|
867 |
+
img_pattern = r'<img[^>]*>'
|
868 |
+
# Case-insensitive to catch <IMG> or mixed-case tags
|
869 |
+
placeholder_images = re.findall(img_pattern, html_content, re.IGNORECASE)
|
870 |
+
|
871 |
+
# Also look for div elements that might be image placeholders
|
872 |
+
div_placeholder_patterns = [
|
873 |
+
r'<div[^>]*class=["\'][^"\']*(?:image|img|photo|picture)[^"\']*["\'][^>]*>.*?</div>',
|
874 |
+
r'<div[^>]*id=["\'][^"\']*(?:image|img|photo|picture)[^"\']*["\'][^>]*>.*?</div>',
|
875 |
+
]
|
876 |
+
|
877 |
+
for pattern in div_placeholder_patterns:
|
878 |
+
matches = re.findall(pattern, html_content, re.IGNORECASE | re.DOTALL)
|
879 |
+
placeholder_images.extend(matches)
|
880 |
+
|
881 |
+
# Count how many images we need to generate
|
882 |
+
num_images_needed = len(placeholder_images)
|
883 |
+
|
884 |
+
if num_images_needed == 0:
|
885 |
+
return ""
|
886 |
+
|
887 |
+
# Generate image prompts based on the number of images found
|
888 |
+
image_prompts = extract_image_prompts_from_text(user_prompt, num_images_needed)
|
889 |
+
|
890 |
+
# Generate images for each prompt
|
891 |
+
generated_images = []
|
892 |
+
for i, prompt in enumerate(image_prompts):
|
893 |
+
image_html = generate_image_with_qwen(prompt, i, token=None) # TODO: Pass token from parent context
|
894 |
+
if not image_html.startswith("Error"):
|
895 |
+
generated_images.append((i, image_html))
|
896 |
+
|
897 |
+
if not generated_images:
|
898 |
+
return ""
|
899 |
+
|
900 |
+
# Create search/replace blocks
|
901 |
+
replacement_blocks = []
|
902 |
+
|
903 |
+
for i, (prompt_index, generated_image) in enumerate(generated_images):
|
904 |
+
if i < len(placeholder_images):
|
905 |
+
# Replace existing placeholder
|
906 |
+
placeholder = placeholder_images[i]
|
907 |
+
# Clean up the placeholder for better matching
|
908 |
+
placeholder_clean = re.sub(r'\s+', ' ', placeholder.strip())
|
909 |
+
|
910 |
+
# Try multiple variations of the placeholder for better matching
|
911 |
+
placeholder_variations = [
|
912 |
+
placeholder_clean,
|
913 |
+
placeholder_clean.replace('"', "'"),
|
914 |
+
placeholder_clean.replace("'", '"'),
|
915 |
+
re.sub(r'\s+', ' ', placeholder_clean),
|
916 |
+
placeholder_clean.replace(' ', ' '),
|
917 |
+
]
|
918 |
+
|
919 |
+
# Create a replacement block for each variation
|
920 |
+
for variation in placeholder_variations:
|
921 |
+
replacement_blocks.append(f"""{SEARCH_START}
|
922 |
+
{variation}
|
923 |
+
{DIVIDER}
|
924 |
+
{generated_image}
|
925 |
+
{REPLACE_END}""")
|
926 |
+
else:
|
927 |
+
# Add new image if we have more generated images than placeholders
|
928 |
+
# Find a good insertion point (after body tag or main content)
|
929 |
+
if '<body' in html_content:
|
930 |
+
body_end = html_content.find('>', html_content.find('<body')) + 1
|
931 |
+
insertion_point = html_content[:body_end] + '\n '
|
932 |
+
replacement_blocks.append(f"""{SEARCH_START}
|
933 |
+
{insertion_point}
|
934 |
+
{DIVIDER}
|
935 |
+
{insertion_point}
|
936 |
+
{generated_image}
|
937 |
+
{REPLACE_END}""")
|
938 |
+
|
939 |
+
return '\n\n'.join(replacement_blocks)
|
940 |
+
|
941 |
+
def create_image_replacement_blocks_text_to_image_single(html_content: str, prompt: str) -> str:
|
942 |
+
"""Create search/replace blocks that generate and insert ONLY ONE text-to-image result."""
|
943 |
+
if not prompt or not prompt.strip():
|
944 |
+
return ""
|
945 |
+
|
946 |
+
import re
|
947 |
+
|
948 |
+
# Detect placeholders similarly to the multi-image version
|
949 |
+
placeholder_patterns = [
|
950 |
+
r'<img[^>]*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
|
951 |
+
r'<img[^>]*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
|
952 |
+
r'<img[^>]*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
|
953 |
+
r'<img[^>]*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
|
954 |
+
r'<img[^>]*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
955 |
+
r'<img[^>]*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
956 |
+
r'<img[^>]*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
957 |
+
r'<img[^>]*src=["\']data:image[^"\']*["\'][^>]*>',
|
958 |
+
r'<img[^>]*src=["\']#["\'][^>]*>',
|
959 |
+
r'<img[^>]*src=["\']about:blank["\'][^>]*>',
|
960 |
+
]
|
961 |
+
|
962 |
+
placeholder_images = []
|
963 |
+
for pattern in placeholder_patterns:
|
964 |
+
matches = re.findall(pattern, html_content, re.IGNORECASE)
|
965 |
+
if matches:
|
966 |
+
placeholder_images.extend(matches)
|
967 |
+
|
968 |
+
# Filter out HF URLs from placeholders (they are real generated content)
|
969 |
+
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
|
970 |
+
|
971 |
+
# Filter out HF URLs from placeholders (they are real generated content)
|
972 |
+
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
|
973 |
+
|
974 |
+
# Fallback to any <img> if no placeholders
|
975 |
+
if not placeholder_images:
|
976 |
+
img_pattern = r'<img[^>]*>'
|
977 |
+
placeholder_images = re.findall(img_pattern, html_content)
|
978 |
+
|
979 |
+
# Generate a single image
|
980 |
+
image_html = generate_image_with_qwen(prompt, 0, token=None) # TODO: Pass token from parent context
|
981 |
+
if image_html.startswith("Error"):
|
982 |
+
return ""
|
983 |
+
|
984 |
+
# Replace first placeholder if present
|
985 |
+
if placeholder_images:
|
986 |
+
placeholder = placeholder_images[0]
|
987 |
+
placeholder_clean = re.sub(r'\s+', ' ', placeholder.strip())
|
988 |
+
placeholder_variations = [
|
989 |
+
placeholder_clean,
|
990 |
+
placeholder_clean.replace('"', "'"),
|
991 |
+
placeholder_clean.replace("'", '"'),
|
992 |
+
re.sub(r'\s+', ' ', placeholder_clean),
|
993 |
+
placeholder_clean.replace(' ', ' '),
|
994 |
+
]
|
995 |
+
blocks = []
|
996 |
+
for variation in placeholder_variations:
|
997 |
+
blocks.append(f"""{SEARCH_START}
|
998 |
+
{variation}
|
999 |
+
{DIVIDER}
|
1000 |
+
{image_html}
|
1001 |
+
{REPLACE_END}""")
|
1002 |
+
return '\n\n'.join(blocks)
|
1003 |
+
|
1004 |
+
# Otherwise insert after <body>
|
1005 |
+
if '<body' in html_content:
|
1006 |
+
body_end = html_content.find('>', html_content.find('<body')) + 1
|
1007 |
+
insertion_point = html_content[:body_end] + '\n '
|
1008 |
+
return f"""{SEARCH_START}
|
1009 |
+
{insertion_point}
|
1010 |
+
{DIVIDER}
|
1011 |
+
{insertion_point}
|
1012 |
+
{image_html}
|
1013 |
+
{REPLACE_END}"""
|
1014 |
+
|
1015 |
+
# If no <body>, just append
|
1016 |
+
return f"{SEARCH_START}\n\n{DIVIDER}\n{image_html}\n{REPLACE_END}"
|
1017 |
+
|
1018 |
+
def create_video_replacement_blocks_text_to_video(html_content: str, prompt: str, session_id: Optional[str] = None) -> str:
|
1019 |
+
"""Create search/replace blocks that generate and insert ONLY ONE text-to-video result."""
|
1020 |
+
if not prompt or not prompt.strip():
|
1021 |
+
return ""
|
1022 |
+
|
1023 |
+
import re
|
1024 |
+
|
1025 |
+
# Detect the same placeholders as image counterparts, to replace the first image slot with a video
|
1026 |
+
placeholder_patterns = [
|
1027 |
+
r'<img[^>]*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
|
1028 |
+
r'<img[^>]*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
|
1029 |
+
r'<img[^>]*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
|
1030 |
+
r'<img[^>]*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
|
1031 |
+
r'<img[^>]*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
1032 |
+
r'<img[^>]*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
1033 |
+
r'<img[^>]*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
1034 |
+
r'<img[^>]*src=["\']data:image[^"\']*["\'][^>]*>',
|
1035 |
+
r'<img[^>]*src=["\']#["\'][^>]*>',
|
1036 |
+
r'<img[^>]*src=["\']about:blank["\'][^>]*>',
|
1037 |
+
]
|
1038 |
+
|
1039 |
+
placeholder_images = []
|
1040 |
+
for pattern in placeholder_patterns:
|
1041 |
+
matches = re.findall(pattern, html_content, re.IGNORECASE)
|
1042 |
+
if matches:
|
1043 |
+
placeholder_images.extend(matches)
|
1044 |
+
|
1045 |
+
# Filter out HF URLs from placeholders (they are real generated content)
|
1046 |
+
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
|
1047 |
+
|
1048 |
+
if not placeholder_images:
|
1049 |
+
img_pattern = r'<img[^>]*>'
|
1050 |
+
placeholder_images = re.findall(img_pattern, html_content)
|
1051 |
+
|
1052 |
+
video_html = generate_video_from_text(prompt, session_id=session_id, token=None) # TODO: Pass token from parent context
|
1053 |
+
if video_html.startswith("Error"):
|
1054 |
+
return ""
|
1055 |
+
|
1056 |
+
# Replace first placeholder if present
|
1057 |
+
if placeholder_images:
|
1058 |
+
placeholder = placeholder_images[0]
|
1059 |
+
placeholder_clean = re.sub(r'\s+', ' ', placeholder.strip())
|
1060 |
+
placeholder_variations = [
|
1061 |
+
placeholder,
|
1062 |
+
placeholder_clean,
|
1063 |
+
placeholder_clean.replace('"', "'"),
|
1064 |
+
placeholder_clean.replace("'", '"'),
|
1065 |
+
re.sub(r'\s+', ' ', placeholder_clean),
|
1066 |
+
placeholder_clean.replace(' ', ' '),
|
1067 |
+
]
|
1068 |
+
blocks = []
|
1069 |
+
for variation in placeholder_variations:
|
1070 |
+
blocks.append(f"""{SEARCH_START}
|
1071 |
+
{variation}
|
1072 |
+
{DIVIDER}
|
1073 |
+
{video_html}
|
1074 |
+
{REPLACE_END}""")
|
1075 |
+
return '\n\n'.join(blocks)
|
1076 |
+
|
1077 |
+
# Otherwise insert after <body> with proper container
|
1078 |
+
if '<body' in html_content:
|
1079 |
+
body_start = html_content.find('<body')
|
1080 |
+
body_end = html_content.find('>', body_start) + 1
|
1081 |
+
opening_body_tag = html_content[body_start:body_end]
|
1082 |
+
|
1083 |
+
# Look for existing container elements to insert into
|
1084 |
+
body_content_start = body_end
|
1085 |
+
|
1086 |
+
# Try to find a good insertion point within existing content structure
|
1087 |
+
patterns_to_try = [
|
1088 |
+
r'<main[^>]*>',
|
1089 |
+
r'<section[^>]*class="[^"]*hero[^"]*"[^>]*>',
|
1090 |
+
r'<div[^>]*class="[^"]*container[^"]*"[^>]*>',
|
1091 |
+
r'<header[^>]*>',
|
1092 |
+
]
|
1093 |
+
|
1094 |
+
insertion_point = None
|
1095 |
+
for pattern in patterns_to_try:
|
1096 |
+
import re
|
1097 |
+
match = re.search(pattern, html_content[body_content_start:], re.IGNORECASE)
|
1098 |
+
if match:
|
1099 |
+
match_end = body_content_start + match.end()
|
1100 |
+
# Find the end of this tag
|
1101 |
+
tag_content = html_content[body_content_start + match.start():match_end]
|
1102 |
+
insertion_point = html_content[:match_end] + '\n '
|
1103 |
+
break
|
1104 |
+
|
1105 |
+
if not insertion_point:
|
1106 |
+
# Fallback to right after body tag with container div
|
1107 |
+
insertion_point = html_content[:body_end] + '\n '
|
1108 |
+
video_with_container = f'<div class="video-container" style="margin: 20px 0; text-align: center;">\n {video_html}\n </div>'
|
1109 |
+
return f"""{SEARCH_START}
|
1110 |
+
{insertion_point}
|
1111 |
+
{DIVIDER}
|
1112 |
+
{insertion_point}
|
1113 |
+
{video_with_container}
|
1114 |
+
{REPLACE_END}"""
|
1115 |
+
else:
|
1116 |
+
return f"""{SEARCH_START}
|
1117 |
+
{insertion_point}
|
1118 |
+
{DIVIDER}
|
1119 |
+
{insertion_point}
|
1120 |
+
{video_html}
|
1121 |
+
{REPLACE_END}"""
|
1122 |
+
|
1123 |
+
# If no <body>, just append
|
1124 |
+
return f"{SEARCH_START}\n\n{DIVIDER}\n{video_html}\n{REPLACE_END}"
|
1125 |
+
|
1126 |
+
def create_music_replacement_blocks_text_to_music(html_content: str, prompt: str, session_id: Optional[str] = None) -> str:
|
1127 |
+
"""Create search/replace blocks that insert ONE generated <audio> near the top of <body>."""
|
1128 |
+
if not prompt or not prompt.strip():
|
1129 |
+
return ""
|
1130 |
+
|
1131 |
+
audio_html = generate_music_from_text(prompt, session_id=session_id, token=None) # TODO: Pass token from parent context
|
1132 |
+
if audio_html.startswith("Error"):
|
1133 |
+
return ""
|
1134 |
+
|
1135 |
+
# Prefer inserting after the first <section>...</section> if present; else after <body>
|
1136 |
+
import re
|
1137 |
+
section_match = re.search(r"<section\b[\s\S]*?</section>", html_content, flags=re.IGNORECASE)
|
1138 |
+
if section_match:
|
1139 |
+
section_html = section_match.group(0)
|
1140 |
+
section_clean = re.sub(r"\s+", " ", section_html.strip())
|
1141 |
+
variations = [
|
1142 |
+
section_html,
|
1143 |
+
section_clean,
|
1144 |
+
section_clean.replace('"', "'"),
|
1145 |
+
section_clean.replace("'", '"'),
|
1146 |
+
re.sub(r"\s+", " ", section_clean),
|
1147 |
+
]
|
1148 |
+
blocks = []
|
1149 |
+
for v in variations:
|
1150 |
+
blocks.append(f"""{SEARCH_START}
|
1151 |
+
{v}
|
1152 |
+
{DIVIDER}
|
1153 |
+
{v}\n {audio_html}
|
1154 |
+
{REPLACE_END}""")
|
1155 |
+
return "\n\n".join(blocks)
|
1156 |
+
if '<body' in html_content:
|
1157 |
+
body_end = html_content.find('>', html_content.find('<body')) + 1
|
1158 |
+
insertion_point = html_content[:body_end] + '\n '
|
1159 |
+
return f"""{SEARCH_START}
|
1160 |
+
{insertion_point}
|
1161 |
+
{DIVIDER}
|
1162 |
+
{insertion_point}
|
1163 |
+
{audio_html}
|
1164 |
+
{REPLACE_END}"""
|
1165 |
+
|
1166 |
+
# If no <body>, just append
|
1167 |
+
return f"{SEARCH_START}\n\n{DIVIDER}\n{audio_html}\n{REPLACE_END}"
|