yeye / generation_engine.py
mgbam's picture
Update generation_engine.py
e6da8aa verified
raw
history blame
38 kB
import uuid
import time
import re
from typing import Dict, List, Optional, Tuple, Generator, Any
import gradio as gr
from utils import get_inference_client, remove_code_block, extract_text_from_file,
create_multimodal_message, apply_search_replace_changes, cleanup_session_media, reap_old_media
from web_utils import extract_website_content, enhance_query_with_search
from code_processing import (
is_streamlit_code, is_gradio_code, extract_html_document,
parse_transformers_js_output, format_transformers_js_output, build_transformers_inline_html,
parse_svelte_output, format_svelte_output,
parse_multipage_html_output, format_multipage_output, validate_and_autofix_files,
inline_multipage_into_single_preview, apply_generated_media_to_html
)
from media_generation import MediaGenerator
from config import (
HTML_SYSTEM_PROMPT, TRANSFORMERS_JS_SYSTEM_PROMPT, SVELTE_SYSTEM_PROMPT, GENERIC_SYSTEM_PROMPT,
SEARCH_START, DIVIDER, REPLACE_END, TEMP_DIR_TTL_SECONDS
)
class GenerationEngine:
"""Advanced code generation engine with multi-model support and intelligent processing"""
def __init__(self):
self.media_generator = MediaGenerator()
self._active_generations = {}
self._generation_stats = {
'total_requests': 0,
'successful_generations': 0,
'errors': 0,
'avg_response_time': 0.0
}
def generate_code(self,
query: Optional[str] = None,
vlm_image: Optional[gr.Image] = None,
gen_image: Optional[gr.Image] = None,
file: Optional[str] = None,
website_url: Optional[str] = None,
settings: Dict[str, Any] = None,
history: Optional[List[Tuple[str, str]]] = None,
current_model: Dict = None,
enable_search: bool = False,
language: str = "html",
provider: str = "auto",
**media_options) -> Generator[Dict[str, Any], None, None]:
"""
Main code generation method with comprehensive options and streaming support
"""
start_time = time.time()
session_id = str(uuid.uuid4())
try:
self._active_generations[session_id] = {
'start_time': start_time,
'status': 'initializing',
'progress': 0
}
# Initialize and validate inputs
query = query or ''
history = history or []
settings = settings or {}
current_model = current_model or {'id': 'Qwen/Qwen3-Coder-480B-A35B-Instruct', 'name': 'Qwen3-Coder'}
# Update statistics
self._generation_stats['total_requests'] += 1
# Cleanup old resources
self._cleanup_resources(session_id)
# Determine if this is a modification request
has_existing_content = self._check_existing_content(history)
# Handle modification requests with search/replace
if has_existing_content and query.strip():
yield from self._handle_modification_request(query, history, current_model, provider, session_id)
return
# Process file inputs and website content
enhanced_query = self._process_inputs(query, file, website_url, enable_search)
# Select appropriate system prompt
system_prompt = self._select_system_prompt(language, enable_search, has_existing_content)
# Prepare messages for LLM
messages = self._prepare_messages(history, system_prompt, enhanced_query, vlm_image)
# Generate code with streaming
yield from self._stream_generation(
messages, current_model, provider, language,
enhanced_query, gen_image, session_id, media_options
)
# Update success statistics
self._generation_stats['successful_generations'] += 1
elapsed_time = time.time() - start_time
self._update_avg_response_time(elapsed_time)
except Exception as e:
self._generation_stats['errors'] += 1
error_message = f"Generation Error: {str(e)}"
print(f"[GenerationEngine] Error: {error_message}")
yield {
'code_output': error_message,
'history_output': self._convert_history_to_messages(history),
'sandbox': f"<div style='padding:2rem;text-align:center;color:#dc2626;background:#fef2f2;border:1px solid #fecaca;border-radius:8px;'><h3>Generation Failed</h3><p>{error_message}</p></div>",
'status': 'error'
}
finally:
# Cleanup generation tracking
self._active_generations.pop(session_id, None)
def _cleanup_resources(self, session_id: str):
"""Clean up temporary resources"""
try:
cleanup_session_media(session_id)
reap_old_media()
except Exception as e:
print(f"[GenerationEngine] Cleanup warning: {e}")
def _check_existing_content(self, history: List[Tuple[str, str]]) -> bool:
"""Check if there's existing content to modify"""
if not history:
return False
last_assistant_msg = history[-1][1] if history else ""
content_indicators = [
'<!DOCTYPE html>', '<html', 'import gradio', 'import streamlit',
'def ', 'IMPORTED PROJECT FROM HUGGING FACE SPACE',
'=== index.html ===', '=== index.js ===', '=== style.css ==='
]
return any(indicator in last_assistant_msg for indicator in content_indicators)
def _handle_modification_request(self, query: str, history: List[Tuple[str, str]],
current_model: Dict, provider: str, session_id: str) -> Generator:
"""Handle search/replace modification requests"""
try:
print("[GenerationEngine] Processing modification request")
client = get_inference_client(current_model['id'], provider)
last_assistant_msg = history[-1][1] if history else ""
# Create search/replace system prompt
system_prompt = f"""You are a code editor assistant. Generate EXACT search/replace blocks for the requested modifications.
CRITICAL REQUIREMENTS:
1. Use EXACTLY these markers: {SEARCH_START}, {DIVIDER}, {REPLACE_END}
2. The SEARCH block must match existing code EXACTLY (including whitespace)
3. Generate multiple blocks if needed for different changes
4. Only include specific lines that need to change with sufficient context
5. DO NOT include explanations outside the blocks
Example:
{SEARCH_START}
<h1>Old Title</h1>
{DIVIDER}
<h1>New Title</h1>
{REPLACE_END}"""
user_prompt = f"""Existing code:
{last_assistant_msg}
Modification request:
{query}
Generate the exact search/replace blocks needed."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
# Generate modification instructions
response = self._call_llm(client, current_model, messages, max_tokens=4000, temperature=0.1)
if response:
# Apply changes
if '=== index.html ===' in last_assistant_msg:
modified_content = self._apply_transformers_js_changes(last_assistant_msg, response)
else:
modified_content = apply_search_replace_changes(last_assistant_msg, response)
if modified_content != last_assistant_msg:
updated_history = history + [(query, modified_content)]
yield {
'code_output': modified_content,
'history': updated_history,
'sandbox': self._generate_preview(modified_content, "html"),
'history_output': self._convert_history_to_messages(updated_history),
'status': 'completed'
}
return
# Fallback to normal generation if modification failed
print("[GenerationEngine] Search/replace failed, falling back to normal generation")
except Exception as e:
print(f"[GenerationEngine] Modification request failed: {e}")
def _process_inputs(self, query: str, file: Optional[str], website_url: Optional[str],
enable_search: bool) -> str:
"""Process file and website inputs, enhance with search if enabled"""
enhanced_query = query
# Process file input
if file:
file_text = extract_text_from_file(file)
if file_text:
file_text = file_text[:5000] # Limit size
enhanced_query = f"{enhanced_query}\n\n[Reference file content]\n{file_text}"
# Process website URL
if website_url and website_url.strip():
website_text = extract_website_content(website_url.strip())
if website_text and not website_text.startswith("Error"):
website_text = website_text[:8000] # Limit size
enhanced_query = f"{enhanced_query}\n\n[Website content to redesign]\n{website_text}"
elif website_text.startswith("Error"):
fallback_guidance = """
Since I couldn't extract the website content, please provide:
1. What type of website is this?
2. What are the main features you want?
3. What's the target audience?
4. Any specific design preferences?"""
enhanced_query = f"{enhanced_query}\n\n[Website extraction error: {website_text}]{fallback_guidance}"
# Enhance with web search
if enable_search:
enhanced_query = enhance_query_with_search(enhanced_query, True)
return enhanced_query
def _select_system_prompt(self, language: str, enable_search: bool, has_existing_content: bool) -> str:
"""Select appropriate system prompt based on context"""
if has_existing_content:
return self._get_followup_system_prompt(language)
# Add search enhancement to prompts if enabled
search_enhancement = """
Use web search results when available to incorporate the latest best practices, frameworks, and technologies.""" if enable_search else ""
if language == "html":
return HTML_SYSTEM_PROMPT + search_enhancement
elif language == "transformers.js":
return TRANSFORMERS_JS_SYSTEM_PROMPT + search_enhancement
elif language == "svelte":
return SVELTE_SYSTEM_PROMPT + search_enhancement
else:
return GENERIC_SYSTEM_PROMPT.format(language=language) + search_enhancement
def _get_followup_system_prompt(self, language: str) -> str:
"""Get follow-up system prompt for modifications"""
return f"""You are an expert developer modifying existing {language} code.
Apply the requested changes using SEARCH/REPLACE blocks with these markers:
{SEARCH_START}, {DIVIDER}, {REPLACE_END}
Requirements:
- SEARCH blocks must match existing code EXACTLY
- Provide multiple blocks for different changes
- Include sufficient context to make matches unique
- Do not include explanations outside the blocks"""
def _prepare_messages(self, history: List[Tuple[str, str]], system_prompt: str,
enhanced_query: str, vlm_image: Optional[gr.Image]) -> List[Dict]:
"""Prepare messages for LLM interaction"""
messages = [{'role': 'system', 'content': system_prompt}]
# Add history
for user_msg, assistant_msg in history:
# Handle multimodal content in history
if isinstance(user_msg, list):
text_content = ""
for item in user_msg:
if isinstance(item, dict) and item.get("type") == "text":
text_content += item.get("text", "")
user_msg = text_content if text_content else str(user_msg)
messages.append({'role': 'user', 'content': user_msg})
messages.append({'role': 'assistant', 'content': assistant_msg})
# Add current query
if vlm_image is not None:
messages.append(create_multimodal_message(enhanced_query, vlm_image))
else:
messages.append({'role': 'user', 'content': enhanced_query})
return messages
def _stream_generation(self, messages: List[Dict], current_model: Dict, provider: str,
language: str, query: str, gen_image: Optional[gr.Image],
session_id: str, media_options: Dict) -> Generator:
"""Stream code generation with real-time updates"""
try:
client = get_inference_client(current_model['id'], provider)
# Handle special model cases
if current_model["id"] == "zai-org/GLM-4.5":
yield from self._handle_glm_45_generation(client, messages, language, query, gen_image, session_id, media_options)
return
elif current_model["id"] == "zai-org/GLM-4.5V":
yield from self._handle_glm_45v_generation(client, messages, language, query, session_id, media_options)
return
# Standard streaming generation
completion = self._create_completion_stream(client, current_model, messages)
content = ""
# Process stream with intelligent updates
for chunk in completion:
chunk_content = self._extract_chunk_content(chunk, current_model)
if chunk_content:
content += chunk_content
# Yield periodic updates based on language type
if language == "transformers.js":
yield from self._handle_transformers_streaming(content)
elif language == "svelte":
yield from self._handle_svelte_streaming(content)
else:
yield from self._handle_standard_streaming(content, language)
# Final processing with media integration
final_content = self._finalize_content(content, language, query, gen_image, session_id, media_options)
yield {
'code_output': final_content,
'history': [(query, final_content)],
'sandbox': self._generate_preview(final_content, language),
'history_output': self._convert_history_to_messages([(query, final_content)]),
'status': 'completed'
}
except Exception as e:
raise Exception(f"Streaming generation failed: {str(e)}")
def _handle_glm_45_generation(self, client, messages, language, query, gen_image, session_id, media_options):
"""Handle GLM-4.5 specific generation"""
try:
stream = client.chat.completions.create(
model="zai-org/GLM-4.5",
messages=messages,
stream=True,
max_tokens=16384,
)
content = ""
for chunk in stream:
if chunk.choices[0].delta.content:
content += chunk.choices[0].delta.content
clean_code = remove_code_block(content)
yield {
'code_output': gr.update(value=clean_code, language=self._get_gradio_language(language)),
'sandbox': self._generate_preview(clean_code, language),
'status': 'streaming'
}
# Apply media generation
final_content = apply_generated_media_to_html(
clean_code, query, session_id=session_id, **media_options
)
yield {
'code_output': final_content,
'history': [(query, final_content)],
'sandbox': self._generate_preview(final_content, language),
'history_output': self._convert_history_to_messages([(query, final_content)]),
'status': 'completed'
}
except Exception as e:
raise Exception(f"GLM-4.5 generation failed: {str(e)}")
def _handle_glm_45v_generation(self, client, messages, language, query, session_id, media_options):
"""Handle GLM-4.5V multimodal generation"""
try:
# Enhanced system prompt for multimodal
enhanced_messages = [
{"role": "system", "content": """You are an expert web developer creating modern, responsive applications.
Output complete, standalone HTML documents that render directly in browsers.
- Include proper DOCTYPE, head, and body structure
- Use modern CSS frameworks and responsive design
- Ensure accessibility and mobile compatibility
- Output raw HTML without escape characters
Always output only the HTML code inside ```html ... ``` blocks."""}
] + messages[1:] # Skip original system message
stream = client.chat.completions.create(
model="zai-org/GLM-4.5V",
messages=enhanced_messages,
stream=True,
max_tokens=16384,
)
content = ""
for chunk in stream:
if hasattr(chunk, "choices") and chunk.choices and hasattr(chunk.choices[0], "delta"):
delta_content = getattr(chunk.choices[0].delta, "content", None)
if delta_content:
content += delta_content
clean_code = remove_code_block(content)
# Handle escaped characters
if "\\n" in clean_code:
clean_code = clean_code.replace("\\n", "\n")
if "\\t" in clean_code:
clean_code = clean_code.replace("\\t", "\t")
yield {
'code_output': gr.update(value=clean_code, language=self._get_gradio_language(language)),
'sandbox': self._generate_preview(clean_code, language),
'status': 'streaming'
}
# Clean final content
clean_code = remove_code_block(content)
if "\\n" in clean_code:
clean_code = clean_code.replace("\\n", "\n")
if "\\t" in clean_code:
clean_code = clean_code.replace("\\t", "\t")
yield {
'code_output': clean_code,
'history': [(query, clean_code)],
'sandbox': self._generate_preview(clean_code, language),
'history_output': self._convert_history_to_messages([(query, clean_code)]),
'status': 'completed'
}
except Exception as e:
raise Exception(f"GLM-4.5V generation failed: {str(e)}")
def _create_completion_stream(self, client, current_model, messages):
"""Create completion stream based on model type"""
if current_model["id"] in ("codestral-2508", "mistral-medium-2508"):
return client.chat.stream(
model=current_model["id"],
messages=messages,
max_tokens=16384
)
elif current_model["id"] in ("gpt-5", "grok-4", "claude-opus-4.1"):
model_name_map = {
"gpt-5": "GPT-5",
"grok-4": "Grok-4",
"claude-opus-4.1": "Claude-Opus-4.1"
}
return client.chat.completions.create(
model=model_name_map[current_model["id"]],
messages=messages,
stream=True,
max_tokens=16384
)
else:
return client.chat.completions.create(
model=current_model["id"],
messages=messages,
stream=True,
max_tokens=16384
)
def _extract_chunk_content(self, chunk, current_model) -> Optional[str]:
"""Extract content from stream chunk based on model format"""
try:
if current_model["id"] in ("codestral-2508", "mistral-medium-2508"):
# Mistral format
if (hasattr(chunk, "data") and chunk.data and
hasattr(chunk.data, "choices") and chunk.data.choices and
hasattr(chunk.data.choices[0], "delta") and
hasattr(chunk.data.choices[0].delta, "content")):
return chunk.data.choices[0].delta.content
else:
# OpenAI format
if (hasattr(chunk, "choices") and chunk.choices and
hasattr(chunk.choices[0], "delta") and
hasattr(chunk.choices[0].delta, "content")):
content = chunk.choices[0].delta.content
# Handle GPT-5 thinking placeholders
if current_model["id"] == "gpt-5" and content:
if self._is_placeholder_thinking_only(content):
return None # Skip placeholder content
return self._strip_placeholder_thinking(content)
return content
except Exception:
pass
return None
def _handle_transformers_streaming(self, content: str) -> Generator:
"""Handle streaming for transformers.js projects"""
files = parse_transformers_js_output(content)
has_all_files = all([files.get('index.html'), files.get('index.js'), files.get('style.css')])
if has_all_files:
merged_html = build_transformers_inline_html(files)
yield {
'code_output': gr.update(value=merged_html, language="html"),
'sandbox': self._send_transformers_to_sandbox(files),
'status': 'streaming'
}
else:
yield {
'code_output': gr.update(value=content, language="html"),
'sandbox': "<div style='padding:1em;text-align:center;color:#888;'>Generating transformers.js app...</div>",
'status': 'streaming'
}
def _handle_svelte_streaming(self, content: str) -> Generator:
"""Handle streaming for Svelte projects"""
yield {
'code_output': gr.update(value=content, language="html"),
'sandbox': "<div style='padding:1em;text-align:center;color:#888;'>Generating Svelte app...</div>",
'status': 'streaming'
}
def _handle_standard_streaming(self, content: str, language: str) -> Generator:
"""Handle streaming for standard projects"""
clean_code = remove_code_block(content)
preview = self._generate_preview(clean_code, language)
yield {
'code_output': gr.update(value=clean_code, language=self._get_gradio_language(language)),
'sandbox': preview,
'status': 'streaming'
}
def _finalize_content(self, content: str, language: str, query: str,
gen_image: Optional[gr.Image], session_id: str, media_options: Dict) -> str:
"""Finalize content with post-processing and media integration"""
final_content = remove_code_block(content)
# Apply media generation for HTML projects
if language == "html":
final_content = apply_generated_media_to_html(
final_content, query, session_id=session_id, **media_options
)
return final_content
def _generate_preview(self, content: str, language: str) -> str:
"""Generate preview HTML for different content types"""
if language == "html":
# Handle multi-page HTML
files = parse_multipage_html_output(content)
files = validate_and_autofix_files(files)
if files and files.get('index.html'):
merged = inline_multipage_into_single_preview(files)
return self._send_to_sandbox(merged)
return self._send_to_sandbox(content)
elif language == "streamlit":
if is_streamlit_code(content):
return self._send_streamlit_to_stlite(content)
return "<div style='padding:1em;color:#888;text-align:center;'>Add `import streamlit as st` to enable Streamlit preview.</div>"
elif language == "gradio":
if is_gradio_code(content):
return self._send_gradio_to_lite(content)
return "<div style='padding:1em;color:#888;text-align:center;'>Add `import gradio as gr` to enable Gradio preview.</div>"
elif language == "python":
if is_streamlit_code(content):
return self._send_streamlit_to_stlite(content)
elif is_gradio_code(content):
return self._send_gradio_to_lite(content)
return "<div style='padding:1em;color:#888;text-align:center;'>Preview available for Streamlit/Gradio apps. Add the appropriate import.</div>"
elif language == "transformers.js":
files = parse_transformers_js_output(content)
if files['index.html']:
return self._send_transformers_to_sandbox(files)
return "<div style='padding:1em;color:#888;text-align:center;'>Preview is only available for HTML, Streamlit, and Gradio applications.</div>"
def _send_to_sandbox(self, code: str) -> str:
"""Send HTML to sandboxed iframe with cache busting"""
import base64
import time
# Add cache-busting timestamp
timestamp = str(int(time.time() * 1000))
cache_bust_comment = f"<!-- refresh-{timestamp} -->"
html_doc = cache_bust_comment + (code or "").strip()
# Inline file URLs as data URIs for iframe compatibility
try:
html_doc = self._inline_file_urls_as_data_uris(html_doc)
except Exception:
pass
encoded_html = base64.b64encode(html_doc.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
return f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture" key="preview-{timestamp}"></iframe>'
def _send_streamlit_to_stlite(self, code: str) -> str:
"""Send Streamlit code to stlite preview"""
import base64
html_doc = f"""<!doctype html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no" />
<title>Streamlit Preview</title>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@stlite/[email protected]/build/stlite.css" />
<style>html,body{{margin:0;padding:0;height:100%;}} streamlit-app{{display:block;height:100%;}}</style>
<script type="module" src="https://cdn.jsdelivr.net/npm/@stlite/[email protected]/build/stlite.js"></script>
</head>
<body>
<streamlit-app>{code or ""}</streamlit-app>
</body>
</html>"""
encoded_html = base64.b64encode(html_doc.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
return f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>'
def _send_gradio_to_lite(self, code: str) -> str:
"""Send Gradio code to gradio-lite preview"""
import base64
html_doc = f"""<!doctype html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no" />
<title>Gradio Preview</title>
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
<style>html,body{{margin:0;padding:0;height:100%;}} gradio-lite{{display:block;height:100%;}}</style>
</head>
<body>
<gradio-lite>{code or ""}</gradio-lite>
</body>
</html>"""
encoded_html = base64.b64encode(html_doc.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
return f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>'
def _send_transformers_to_sandbox(self, files: Dict[str, str]) -> str:
"""Send transformers.js files to sandbox"""
merged_html = build_transformers_inline_html(files)
return self._send_to_sandbox(merged_html)
def _inline_file_urls_as_data_uris(self, html_doc: str) -> str:
"""Convert file:// URLs to data URIs for iframe compatibility"""
import base64
import mimetypes
import urllib.parse
def _file_url_to_data_uri(file_url: str) -> Optional[str]:
try:
parsed = urllib.parse.urlparse(file_url)
path = urllib.parse.unquote(parsed.path)
if not path:
return None
with open(path, 'rb') as f:
raw = f.read()
mime = mimetypes.guess_type(path)[0] or 'application/octet-stream'
b64 = base64.b64encode(raw).decode()
return f"data:{mime};base64,{b64}"
except Exception:
return None
def _replace_file_url(match):
url = match.group(1)
data_uri = _file_url_to_data_uri(url)
return f'src="{data_uri}"' if data_uri else match.group(0)
html_doc = re.sub(r'src="(file:[^"]+)"', _replace_file_url, html_doc)
html_doc = re.sub(r"src='(file:[^']+)'", _replace_file_url, html_doc)
return html_doc
def _apply_transformers_js_changes(self, original_content: str, changes_text: str) -> str:
"""Apply search/replace changes to transformers.js content"""
# Parse original content
files = parse_transformers_js_output(original_content)
# Apply changes to each file
blocks = self._parse_search_replace_blocks(changes_text)
for block in blocks:
search_text, replace_text = block
# Determine target file and apply changes
for file_key in ['index.html', 'index.js', 'style.css']:
if search_text in files[file_key]:
files[file_key] = files[file_key].replace(search_text, replace_text)
break
return format_transformers_js_output(files)
def _parse_search_replace_blocks(self, changes_text: str) -> List[Tuple[str, str]]:
"""Parse search/replace blocks from text"""
blocks = []
current_block = ""
lines = changes_text.split('\n')
for line in lines:
if line.strip() == SEARCH_START:
if current_block.strip():
blocks.append(current_block.strip())
current_block = line + '\n'
elif line.strip() == REPLACE_END:
current_block += line + '\n'
blocks.append(current_block.strip())
current_block = ""
else:
current_block += line + '\n'
if current_block.strip():
blocks.append(current_block.strip())
# Parse each block into search/replace pairs
parsed_blocks = []
for block in blocks:
lines = block.split('\n')
search_lines = []
replace_lines = []
in_search = False
in_replace = False
for line in lines:
if line.strip() == SEARCH_START:
in_search = True
in_replace = False
elif line.strip() == DIVIDER:
in_search = False
in_replace = True
elif line.strip() == REPLACE_END:
in_replace = False
elif in_search:
search_lines.append(line)
elif in_replace:
replace_lines.append(line)
if search_lines:
search_text = '\n'.join(search_lines).strip()
replace_text = '\n'.join(replace_lines).strip()
parsed_blocks.append((search_text, replace_text))
return parsed_blocks
def _call_llm(self, client, current_model: Dict, messages: List[Dict],
max_tokens: int = 4000, temperature: float = 0.7) -> Optional[str]:
"""Call LLM and return response content"""
try:
if current_model.get('type') == 'openai':
response = client.chat.completions.create(
model=current_model['id'],
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return response.choices[0].message.content
elif current_model.get('type') == 'mistral':
response = client.chat.complete(
model=current_model['id'],
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return response.choices[0].message.content
else:
completion = client.chat.completions.create(
model=current_model['id'],
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return completion.choices[0].message.content
except Exception as e:
print(f"[GenerationEngine] LLM call failed: {e}")
return None
def _convert_history_to_messages(self, history: List[Tuple[str, str]]) -> List[Dict[str, str]]:
"""Convert history tuples to message format"""
messages = []
for user_msg, assistant_msg in history:
if isinstance(user_msg, list):
text_content = ""
for item in user_msg:
if isinstance(item, dict) and item.get("type") == "text":
text_content += item.get("text", "")
user_msg = text_content if text_content else str(user_msg)
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
return messages
def _get_gradio_language(self, language: str) -> Optional[str]:
"""Get appropriate Gradio language for syntax highlighting"""
from config import get_gradio_language
return get_gradio_language(language)
def _is_placeholder_thinking_only(self, text: str) -> bool:
"""Check if text contains only thinking placeholders"""
if not text:
return False
stripped = text.strip()
if not stripped:
return False
return re.fullmatch(r"(?s)(?:\s*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?\s*)+", stripped) is not None
def _strip_placeholder_thinking(self, text: str) -> str:
"""Remove placeholder thinking status lines"""
if not text:
return text
return re.sub(r"(?mi)^[\t ]*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?[\t ]*$\n?", "", text)
def _update_avg_response_time(self, elapsed_time: float):
"""Update average response time statistic"""
current_avg = self._generation_stats['avg_response_time']
total_successful = self._generation_stats['successful_generations']
if total_successful <= 1:
self._generation_stats['avg_response_time'] = elapsed_time
else:
# Weighted average
self._generation_stats['avg_response_time'] = (current_avg * (total_successful - 1) + elapsed_time) / total_successful
def get_generation_stats(self) -> Dict[str, Any]:
"""Get current generation statistics"""
return self._generation_stats.copy()
def get_active_generations(self) -> Dict[str, Dict[str, Any]]:
"""Get information about currently active generations"""
return self._active_generations.copy()
# Global generation engine instance
generation_engine = GenerationEngine()