Update mini_ladder.py
Browse files- mini_ladder.py +16 -16
mini_ladder.py
CHANGED
@@ -3,11 +3,13 @@ from transformers import pipeline, AutoTokenizer
|
|
3 |
# ------------------------------
|
4 |
# 1) CRITIQUE MODEL & TOKENIZER
|
5 |
# ------------------------------
|
6 |
-
|
|
|
7 |
critique_pipeline = pipeline("text-generation", model=CRITIQUE_MODEL_NAME)
|
8 |
critique_tokenizer = AutoTokenizer.from_pretrained(CRITIQUE_MODEL_NAME)
|
9 |
|
10 |
-
#
|
|
|
11 |
GPT2_MAX_CONTEXT = 1024
|
12 |
|
13 |
# ------------------------------
|
@@ -28,8 +30,8 @@ def generate_sub_questions(main_query: str):
|
|
28 |
# ------------------------------
|
29 |
def self_critique_and_refine(query: str, initial_answer: str, docs: list):
|
30 |
"""
|
31 |
-
|
32 |
-
|
33 |
"""
|
34 |
# A) Construct the critique prompt.
|
35 |
critique_prompt = (
|
@@ -40,14 +42,13 @@ def self_critique_and_refine(query: str, initial_answer: str, docs: list):
|
|
40 |
"CRITIQUE:"
|
41 |
)
|
42 |
|
43 |
-
# B) Truncate the prompt so that prompt tokens + new tokens <= GPT2_MAX_CONTEXT.
|
44 |
-
|
45 |
-
truncated_prompt = _truncate_prompt_for_gpt2(critique_prompt, buffer=80)
|
46 |
|
47 |
-
# C) Generate the critique using
|
48 |
critique_gen = critique_pipeline(
|
49 |
truncated_prompt,
|
50 |
-
max_new_tokens=20, #
|
51 |
truncation=True
|
52 |
)
|
53 |
if critique_gen and isinstance(critique_gen, list):
|
@@ -55,7 +56,7 @@ def self_critique_and_refine(query: str, initial_answer: str, docs: list):
|
|
55 |
else:
|
56 |
critique_text = "No critique generated."
|
57 |
|
58 |
-
# D) If the critique flags issues, refine
|
59 |
if any(word in critique_text.lower() for word in ["missing", "incomplete", "incorrect", "lacks"]):
|
60 |
refine_prompt = (
|
61 |
f"Question: {query}\n"
|
@@ -66,8 +67,8 @@ def self_critique_and_refine(query: str, initial_answer: str, docs: list):
|
|
66 |
+ "\n\n".join(docs)
|
67 |
+ "\nREFINED ANSWER:"
|
68 |
)
|
69 |
-
# Optionally,
|
70 |
-
from backend import qa_pipeline # Import here to avoid circular
|
71 |
refined_gen = qa_pipeline(refine_prompt, max_new_tokens=120, truncation=True)
|
72 |
if refined_gen and isinstance(refined_gen, list):
|
73 |
refined_answer = refined_gen[0]["generated_text"]
|
@@ -81,13 +82,12 @@ def self_critique_and_refine(query: str, initial_answer: str, docs: list):
|
|
81 |
# ------------------------------
|
82 |
# 4) HELPER: GPT-2 PROMPT TRUNCATION
|
83 |
# ------------------------------
|
84 |
-
def _truncate_prompt_for_gpt2(prompt_text: str, buffer: int =
|
85 |
"""
|
86 |
-
Truncates the input prompt so that its token count plus a reserved buffer
|
87 |
-
|
88 |
"""
|
89 |
tokens = critique_tokenizer.encode(prompt_text, add_special_tokens=False)
|
90 |
-
# Ensure we leave room for 'buffer' tokens for generation.
|
91 |
max_allowed = GPT2_MAX_CONTEXT - buffer
|
92 |
if len(tokens) > max_allowed:
|
93 |
tokens = tokens[:max_allowed]
|
|
|
3 |
# ------------------------------
|
4 |
# 1) CRITIQUE MODEL & TOKENIZER
|
5 |
# ------------------------------
|
6 |
+
# Use DistilGPT-2 (a smaller, distilled version of GPT-2) for faster inference on CPU.
|
7 |
+
CRITIQUE_MODEL_NAME = "distilgpt2"
|
8 |
critique_pipeline = pipeline("text-generation", model=CRITIQUE_MODEL_NAME)
|
9 |
critique_tokenizer = AutoTokenizer.from_pretrained(CRITIQUE_MODEL_NAME)
|
10 |
|
11 |
+
# DistilGPT-2 has a maximum context length similar to GPT-2 (around 1024 tokens),
|
12 |
+
# but we reserve a smaller buffer since we now generate fewer tokens.
|
13 |
GPT2_MAX_CONTEXT = 1024
|
14 |
|
15 |
# ------------------------------
|
|
|
30 |
# ------------------------------
|
31 |
def self_critique_and_refine(query: str, initial_answer: str, docs: list):
|
32 |
"""
|
33 |
+
Uses a smaller model (DistilGPT-2) for self-critique, with a reduced max_new_tokens.
|
34 |
+
If the critique indicates issues, refines the answer using BioGPT.
|
35 |
"""
|
36 |
# A) Construct the critique prompt.
|
37 |
critique_prompt = (
|
|
|
42 |
"CRITIQUE:"
|
43 |
)
|
44 |
|
45 |
+
# B) Truncate the prompt so that prompt tokens + new tokens (20) <= GPT2_MAX_CONTEXT.
|
46 |
+
truncated_prompt = _truncate_prompt_for_gpt2(critique_prompt, buffer=20)
|
|
|
47 |
|
48 |
+
# C) Generate the critique using DistilGPT-2.
|
49 |
critique_gen = critique_pipeline(
|
50 |
truncated_prompt,
|
51 |
+
max_new_tokens=20, # Reduced new tokens for speed.
|
52 |
truncation=True
|
53 |
)
|
54 |
if critique_gen and isinstance(critique_gen, list):
|
|
|
56 |
else:
|
57 |
critique_text = "No critique generated."
|
58 |
|
59 |
+
# D) If the critique flags issues, refine using BioGPT.
|
60 |
if any(word in critique_text.lower() for word in ["missing", "incomplete", "incorrect", "lacks"]):
|
61 |
refine_prompt = (
|
62 |
f"Question: {query}\n"
|
|
|
67 |
+ "\n\n".join(docs)
|
68 |
+ "\nREFINED ANSWER:"
|
69 |
)
|
70 |
+
# Optionally, you might also truncate the refine_prompt if needed.
|
71 |
+
from backend import qa_pipeline # Import here to avoid circular dependencies.
|
72 |
refined_gen = qa_pipeline(refine_prompt, max_new_tokens=120, truncation=True)
|
73 |
if refined_gen and isinstance(refined_gen, list):
|
74 |
refined_answer = refined_gen[0]["generated_text"]
|
|
|
82 |
# ------------------------------
|
83 |
# 4) HELPER: GPT-2 PROMPT TRUNCATION
|
84 |
# ------------------------------
|
85 |
+
def _truncate_prompt_for_gpt2(prompt_text: str, buffer: int = 20) -> str:
|
86 |
"""
|
87 |
+
Truncates the input prompt so that its token count plus a reserved buffer for new tokens
|
88 |
+
does not exceed GPT-2's (or DistilGPT-2's) maximum context length.
|
89 |
"""
|
90 |
tokens = critique_tokenizer.encode(prompt_text, add_special_tokens=False)
|
|
|
91 |
max_allowed = GPT2_MAX_CONTEXT - buffer
|
92 |
if len(tokens) > max_allowed:
|
93 |
tokens = tokens[:max_allowed]
|