mgbam commited on
Commit
1bc3e18
·
verified ·
1 Parent(s): 4031a24

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -6
app.py CHANGED
@@ -1,11 +1,18 @@
 
 
 
 
 
 
 
1
  import subprocess
2
  import sys
 
3
 
4
- # Force reinstall pydantic v1 before any other imports to ensure compatibility with Chromadb.
5
  subprocess.run([sys.executable, "-m", "pip", "install", "--force-reinstall", "pydantic==1.10.7"])
6
 
7
- import os
8
- # Set HF Hub timeout to 60 seconds.
9
  os.environ["HF_HUB_TIMEOUT"] = "60"
10
 
11
  import streamlit as st
@@ -14,16 +21,20 @@ from backend import process_medical_query, docs_cache
14
  from visualization import create_medical_graph
15
 
16
  def main():
 
 
17
  st.title("AI-Powered Medical Knowledge Graph Assistant")
18
  st.markdown(
19
- "**Using BioGPT-Large-PubMedQA + PubMed + Chroma** for advanced retrieval-augmented generation."
 
 
 
 
20
  )
21
 
22
- # Clinical query input – designed for clarity and ease-of-use.
23
  user_query = st.text_input("Enter biomedical/medical query", "Malaria and cough treatment")
24
  if st.button("Submit"):
25
  with st.spinner("Generating answer..."):
26
- # Process the query using the streamlined backend.
27
  final_answer, sub_questions, initial_answer, critique = process_medical_query(user_query)
28
 
29
  st.subheader("AI Answer")
 
1
+ """
2
+ app.py
3
+ ------
4
+ This is the main Streamlit application. It provides a clinician-friendly interface to input a clinical query,
5
+ displays the generated answer, and visualizes key clinical concepts via an interactive knowledge graph.
6
+ """
7
+
8
  import subprocess
9
  import sys
10
+ import os
11
 
12
+ # Force reinstall pydantic v1 to ensure compatibility with Chromadb.
13
  subprocess.run([sys.executable, "-m", "pip", "install", "--force-reinstall", "pydantic==1.10.7"])
14
 
15
+ # Set the Hugging Face Hub timeout.
 
16
  os.environ["HF_HUB_TIMEOUT"] = "60"
17
 
18
  import streamlit as st
 
21
  from visualization import create_medical_graph
22
 
23
  def main():
24
+ st.set_page_config(page_title="AI-Powered Medical Knowledge Graph Assistant",
25
+ layout="wide")
26
  st.title("AI-Powered Medical Knowledge Graph Assistant")
27
  st.markdown(
28
+ """
29
+ **Using BioGPT-Large-PubMedQA + PubMed + Chroma** for advanced retrieval-augmented generation.
30
+
31
+ Enter your clinical query below to retrieve and synthesize relevant medical literature.
32
+ """
33
  )
34
 
 
35
  user_query = st.text_input("Enter biomedical/medical query", "Malaria and cough treatment")
36
  if st.button("Submit"):
37
  with st.spinner("Generating answer..."):
 
38
  final_answer, sub_questions, initial_answer, critique = process_medical_query(user_query)
39
 
40
  st.subheader("AI Answer")