Medic / retrieval.py
mgbam's picture
Update retrieval.py
118ab17 verified
raw
history blame
4.97 kB
import os
import tempfile
import requests
import torch
from typing import List
import chromadb
from chromadb.config import Settings
from transformers import AutoTokenizer, AutoModel
# Optional: Set your PubMed API key from environment variables
PUBMED_API_KEY = os.environ.get("PUBMED_API_KEY", "<YOUR_NCBI_API_KEY>")
#############################################
# 1) FETCH PUBMED ABSTRACTS
#############################################
def fetch_pubmed_abstracts(query: str, max_results: int = 5) -> List[str]:
"""
Fetches PubMed abstracts for the given query using NCBI's E-utilities.
Returns a list of abstract texts.
"""
search_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
params = {
"db": "pubmed",
"term": query,
"retmax": max_results,
"api_key": PUBMED_API_KEY,
"retmode": "json"
}
r = requests.get(search_url, params=params)
r.raise_for_status()
data = r.json()
pmid_list = data["esearchresult"].get("idlist", [])
abstracts = []
fetch_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
for pmid in pmid_list:
fetch_params = {
"db": "pubmed",
"id": pmid,
"rettype": "abstract",
"retmode": "text",
"api_key": PUBMED_API_KEY
}
fetch_resp = requests.get(fetch_url, params=fetch_params)
fetch_resp.raise_for_status()
abstract_text = fetch_resp.text.strip()
if abstract_text:
abstracts.append(abstract_text)
return abstracts
#############################################
# 2) CHROMA + EMBEDDINGS SETUP
#############################################
class EmbedFunction:
"""
Wraps a Hugging Face embedding model to produce embeddings for a list of strings.
"""
def __init__(self, model_name: str):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.model.eval()
def __call__(self, input: List[str]) -> List[List[float]]:
if not input:
return []
tokenized = self.tokenizer(
input,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
with torch.no_grad():
outputs = self.model(**tokenized, output_hidden_states=True)
last_hidden = outputs.hidden_states[-1]
pooled = last_hidden.mean(dim=1)
embeddings = pooled.cpu().tolist()
return embeddings
EMBED_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
embed_function = EmbedFunction(EMBED_MODEL_NAME)
# Use a temporary directory for persistent storage.
temp_dir = tempfile.mkdtemp()
print("Using temporary persist_directory:", temp_dir)
client = chromadb.Client(
settings=Settings(
persist_directory=temp_dir,
anonymized_telemetry=False
)
)
# Create or get the collection. Use a clear name.
collection = client.get_or_create_collection(
name="ai_medical_knowledge",
embedding_function=embed_function
)
# Force initialization: add a dummy document and perform a dummy query.
try:
collection.add(documents=["dummy"], ids=["dummy"])
_ = collection.query(query_texts=["dummy"], n_results=1)
# Optionally, remove the dummy document if needed (Chromadb might not support deletion, so you can ignore it)
print("Dummy initialization successful.")
except Exception as init_err:
print("Dummy initialization failed:", init_err)
def index_pubmed_docs(docs: List[str], prefix: str = "doc"):
"""
Adds documents to the Chromadb collection with unique IDs.
"""
for i, doc in enumerate(docs):
if doc.strip():
doc_id = f"{prefix}-{i}"
try:
collection.add(documents=[doc], ids=[doc_id])
print(f"Added document with id: {doc_id}")
except Exception as e:
print(f"Error adding document id {doc_id}: {e}")
raise
def query_similar_docs(query: str, top_k: int = 3) -> List[str]:
"""
Retrieves the top_k similar documents from Chromadb based on embedding similarity.
"""
results = collection.query(query_texts=[query], n_results=top_k)
return results["documents"][0] if results and results["documents"] else []
#############################################
# 3) MAIN RETRIEVAL PIPELINE
#############################################
def get_relevant_pubmed_docs(user_query: str) -> List[str]:
"""
End-to-end pipeline:
1. Fetch PubMed abstracts for the query.
2. Index them in Chromadb.
3. Retrieve the top relevant documents.
"""
new_abstracts = fetch_pubmed_abstracts(user_query, max_results=5)
if not new_abstracts:
return []
index_pubmed_docs(new_abstracts, prefix=user_query)
top_docs = query_similar_docs(user_query, top_k=3)
return top_docs