Spaces:
Runtime error
Runtime error
jasper9w
commited on
Commit
·
5fbd01c
1
Parent(s):
7a97ad4
add train.py
Browse files
train.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import soundfile as sf
|
3 |
+
import torch
|
4 |
+
import evaluate
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from datasets import Dataset, DatasetDict
|
9 |
+
import evaluate
|
10 |
+
from transformers import (
|
11 |
+
WhisperFeatureExtractor,
|
12 |
+
WhisperTokenizer,
|
13 |
+
WhisperProcessor,
|
14 |
+
WhisperForConditionalGeneration,
|
15 |
+
Seq2SeqTrainer,
|
16 |
+
Seq2SeqTrainingArguments
|
17 |
+
)
|
18 |
+
from typing import Any, Dict, List, Union
|
19 |
+
|
20 |
+
# 加载特征提取器
|
21 |
+
def load_feature_extractor():
|
22 |
+
return WhisperFeatureExtractor.from_pretrained("openai/whisper-tiny")
|
23 |
+
|
24 |
+
def load_dataset(directory, train_ratio):
|
25 |
+
def load_audio_data(dir):
|
26 |
+
data_dict = {'audio': [], 'sentence': []}
|
27 |
+
for filename in os.listdir(dir):
|
28 |
+
if filename.endswith('.wav'):
|
29 |
+
path = os.path.join(dir, filename)
|
30 |
+
data, samplerate = sf.read(path)
|
31 |
+
audio_dict = {'path': path, 'array': data, 'sampling_rate': samplerate}
|
32 |
+
data_dict['audio'].append(audio_dict)
|
33 |
+
sentence = filename.split('_')[0] # 获取文件名中的第一个部分作为句子
|
34 |
+
data_dict['sentence'].append(sentence)
|
35 |
+
return data_dict
|
36 |
+
|
37 |
+
def split_dataset(data_dict, train_ratio):
|
38 |
+
total_size = len(data_dict['audio'])
|
39 |
+
train_size = int(total_size * train_ratio)
|
40 |
+
indices = np.arange(total_size)
|
41 |
+
np.random.shuffle(indices)
|
42 |
+
train_indices, test_indices = indices[:train_size], indices[train_size:]
|
43 |
+
|
44 |
+
train_dict = {key: [value[i] for i in train_indices] for key, value in data_dict.items()}
|
45 |
+
test_dict = {key: [value[i] for i in test_indices] for key, value in data_dict.items()}
|
46 |
+
|
47 |
+
return Dataset.from_dict(train_dict), Dataset.from_dict(test_dict)
|
48 |
+
|
49 |
+
data_dict = load_audio_data(directory)
|
50 |
+
train_dataset, test_dataset = split_dataset(data_dict, train_ratio)
|
51 |
+
|
52 |
+
return DatasetDict({
|
53 |
+
'train': train_dataset,
|
54 |
+
'test': test_dataset
|
55 |
+
})
|
56 |
+
|
57 |
+
# 加载语音转换器
|
58 |
+
def load_tokenizer():
|
59 |
+
return WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="zh", task="transcribe")
|
60 |
+
|
61 |
+
# 准备数据集
|
62 |
+
def prepare_dataset(batch):
|
63 |
+
audio = batch["audio"]
|
64 |
+
batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
|
65 |
+
batch["labels"] = tokenizer(batch["sentence"]).input_ids
|
66 |
+
return batch
|
67 |
+
|
68 |
+
# 数据集整理
|
69 |
+
@dataclass
|
70 |
+
class DataCollatorSpeechSeq2SeqWithPadding:
|
71 |
+
processor: Any
|
72 |
+
|
73 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
74 |
+
# 整理特征
|
75 |
+
input_features = [{"input_features": feature["input_features"]} for feature in features]
|
76 |
+
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
|
77 |
+
|
78 |
+
# 整理标签
|
79 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
80 |
+
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
|
81 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
82 |
+
if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
|
83 |
+
labels = labels[:, 1:]
|
84 |
+
|
85 |
+
batch["labels"] = labels
|
86 |
+
return batch
|
87 |
+
|
88 |
+
|
89 |
+
metric = evaluate.load("cer")
|
90 |
+
|
91 |
+
# 计算指标
|
92 |
+
def compute_metrics(pred):
|
93 |
+
pred_ids = pred.predictions
|
94 |
+
label_ids = pred.label_ids
|
95 |
+
label_ids[label_ids == -100] = tokenizer.pad_token_id
|
96 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
97 |
+
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
|
98 |
+
|
99 |
+
print("pred_str", pred_str)
|
100 |
+
print("label_str", label_str)
|
101 |
+
cer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
102 |
+
return {"cer": cer}
|
103 |
+
|
104 |
+
|
105 |
+
# 训练模型
|
106 |
+
def train_model(train_dataset, eval_dataset, model, processor, output_dir):
|
107 |
+
training_args = Seq2SeqTrainingArguments(
|
108 |
+
output_dir=output_dir,
|
109 |
+
per_device_train_batch_size=16,
|
110 |
+
gradient_accumulation_steps=1,
|
111 |
+
learning_rate=1e-5,
|
112 |
+
warmup_steps=5,
|
113 |
+
max_steps=50,
|
114 |
+
gradient_checkpointing=True,
|
115 |
+
fp16=True,
|
116 |
+
evaluation_strategy="steps",
|
117 |
+
per_device_eval_batch_size=8,
|
118 |
+
predict_with_generate=True,
|
119 |
+
generation_max_length=225,
|
120 |
+
save_steps=10,
|
121 |
+
eval_steps=10,
|
122 |
+
logging_steps=5,
|
123 |
+
report_to=["tensorboard"],
|
124 |
+
load_best_model_at_end=True,
|
125 |
+
metric_for_best_model="cer",
|
126 |
+
greater_is_better=False,
|
127 |
+
push_to_hub=True
|
128 |
+
)
|
129 |
+
|
130 |
+
trainer = Seq2SeqTrainer(
|
131 |
+
args=training_args,
|
132 |
+
model=model,
|
133 |
+
train_dataset=train_dataset,
|
134 |
+
eval_dataset=eval_dataset,
|
135 |
+
data_collator=DataCollatorSpeechSeq2SeqWithPadding(processor=processor),
|
136 |
+
compute_metrics=compute_metrics,
|
137 |
+
tokenizer=processor.feature_extractor
|
138 |
+
)
|
139 |
+
|
140 |
+
processor.save_pretrained(training_args.output_dir)
|
141 |
+
trainer.train()
|
142 |
+
|
143 |
+
|
144 |
+
def load_my_dataset_with_cache():
|
145 |
+
import os
|
146 |
+
import pickle
|
147 |
+
|
148 |
+
cache_file = 'dataset_cache.pkl'
|
149 |
+
|
150 |
+
if os.path.exists(cache_file):
|
151 |
+
# 如果缓存文件存在,就直接从缓存中加载数据集
|
152 |
+
print("WAIN: load dataset from cache: {cache_file}")
|
153 |
+
with open(cache_file, 'rb') as f:
|
154 |
+
dataset = pickle.load(f)
|
155 |
+
return dataset
|
156 |
+
else:
|
157 |
+
# 否则,就加载并处理数据集,然后将其保存到缓存文件中
|
158 |
+
dataset = load_dataset('audios', 0.8)
|
159 |
+
dataset = dataset.map(prepare_dataset, remove_columns=dataset.column_names["train"])
|
160 |
+
|
161 |
+
with open(cache_file, 'wb') as f:
|
162 |
+
pickle.dump(dataset, f)
|
163 |
+
|
164 |
+
return dataset
|
165 |
+
|
166 |
+
# 以下是主程序
|
167 |
+
if __name__ == "__main__":
|
168 |
+
# 加载模型和工具
|
169 |
+
feature_extractor = load_feature_extractor()
|
170 |
+
tokenizer = load_tokenizer()
|
171 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny", language="zh", task="transcribe")
|
172 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
173 |
+
|
174 |
+
model.config.forced_decoder_ids = None
|
175 |
+
model.config.suppress_tokens = []
|
176 |
+
|
177 |
+
# 加载数据集
|
178 |
+
dataset = load_my_dataset_with_cache()
|
179 |
+
|
180 |
+
# 训练模型
|
181 |
+
train_model(dataset["train"], dataset["test"], model, processor, "./whisper-tiny-zh4")
|