DeepSeekCoderChat / hf_model.py
mew77's picture
Update hf_model.py
29fabcc verified
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from datetime import datetime
import os
from mew_log import log_info, log_error # Import your custom logging methods
class HFModel:
def __init__(self, model_name):
parts = model_name.split("/")
self.friendly_name = parts[1]
self.chat_history = []
self.log_file = f"chat_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
try:
log_info(f"=== Loading Model: {self.friendly_name} ===")
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16) #.cuda()
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
log_info(f"=== Model Loaded Successfully: {self.friendly_name} ===")
except Exception as e:
log_error(f"ERROR Loading Model: {e}", e)
raise
def generate_response(self, input_text, max_length=100, skip_special_tokens=True):
try:
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
**inputs,
max_length=max_length,
pad_token_id=self.tokenizer.eos_token_id, # Ensure proper padding
do_sample=True, # Enable sampling for more diverse outputs
top_k=50, # Limit sampling to top-k tokens
top_p=0.95, # Use nucleus sampling
temperature=0.7, # Control randomness
)
#inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device)
#outputs = self.model.generate(**inputs, max_length=max_length)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=skip_special_tokens).strip()
log_info(f"Generated Response: {response}")
return response
except Exception as e:
log_error(f"ERROR Generating Response: {e}", e)
raise
def stream_response(self, input_text, max_length=100, skip_special_tokens=True):
try:
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device)
for output in self.model.generate(**inputs, max_length=max_length, do_stream=True):
response = self.tokenizer.decode(output, skip_special_tokens=skip_special_tokens).strip()
yield response
except Exception as e:
log_error(f"ERROR Streaming Response: {e}", e)
raise
def chat(self, user_input, max_length=100, skip_special_tokens=True):
try:
# Add user input to chat history
self.chat_history.append({"role": "user", "content": user_input})
log_info(f"User Input: {user_input}")
# Generate model response
model_response = self.generate_response(user_input, max_length=max_length, skip_special_tokens=skip_special_tokens)
# Add model response to chat history
self.chat_history.append({"role": "assistant", "content": model_response})
log_info(f"Assistant Response: {model_response}")
# Save chat log
self.save_chat_log()
return model_response
except Exception as e:
log_error(f"ERROR in Chat: {e}", e)
raise
def save_chat_log(self):
try:
with open(self.log_file, "a", encoding="utf-8") as f:
for entry in self.chat_history[-2:]: # Save only the latest interaction
role = entry["role"]
content = entry["content"]
f.write(f"**{role.capitalize()}:**\n\n{content}\n\n---\n\n")
log_info(f"Chat log saved to {self.log_file}")
except Exception as e:
log_error(f"ERROR Saving Chat Log: {e}", e)
raise
def clear_chat_history(self):
try:
self.chat_history = []
log_info("Chat history cleared.")
except Exception as e:
log_error(f"ERROR Clearing Chat History: {e}", e)
raise
def print_chat_history(self):
try:
for entry in self.chat_history:
role = entry["role"]
content = entry["content"]
print(f"{role.capitalize()}: {content}\n")
log_info("Printed chat history to console.")
except Exception as e:
log_error(f"ERROR Printing Chat History: {e}", e)
raise