Spaces:
Running
Running
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from datetime import datetime | |
import os | |
from mew_log import log_info, log_error # Import your custom logging methods | |
class HFModel: | |
def __init__(self, model_name): | |
parts = model_name.split("/") | |
self.friendly_name = parts[1] | |
self.chat_history = [] | |
self.log_file = f"chat_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md" | |
try: | |
log_info(f"=== Loading Model: {self.friendly_name} ===") | |
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
log_info(f"=== Model Loaded Successfully: {self.friendly_name} ===") | |
except Exception as e: | |
log_error(f"ERROR Loading Model: {e}", e) | |
raise | |
def generate_response(self, input_text, max_length=100, skip_special_tokens=True): | |
try: | |
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device) | |
outputs = self.model.generate(**inputs, max_length=max_length) | |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=skip_special_tokens).strip() | |
log_info(f"Generated Response: {response}") | |
return response | |
except Exception as e: | |
log_error(f"ERROR Generating Response: {e}", e) | |
raise | |
def stream_response(self, input_text, max_length=100, skip_special_tokens=True): | |
try: | |
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device) | |
for output in self.model.generate(**inputs, max_length=max_length, do_stream=True): | |
response = self.tokenizer.decode(output, skip_special_tokens=skip_special_tokens).strip() | |
yield response | |
except Exception as e: | |
log_error(f"ERROR Streaming Response: {e}", e) | |
raise | |
def chat(self, user_input, max_length=100, skip_special_tokens=True): | |
try: | |
# Add user input to chat history | |
self.chat_history.append({"role": "user", "content": user_input}) | |
log_info(f"User Input: {user_input}") | |
# Generate model response | |
model_response = self.generate_response(user_input, max_length=max_length, skip_special_tokens=skip_special_tokens) | |
# Add model response to chat history | |
self.chat_history.append({"role": "assistant", "content": model_response}) | |
log_info(f"Assistant Response: {model_response}") | |
# Save chat log | |
self.save_chat_log() | |
return model_response | |
except Exception as e: | |
log_error(f"ERROR in Chat: {e}", e) | |
raise | |
def save_chat_log(self): | |
try: | |
with open(self.log_file, "a", encoding="utf-8") as f: | |
for entry in self.chat_history[-2:]: # Save only the latest interaction | |
role = entry["role"] | |
content = entry["content"] | |
f.write(f"**{role.capitalize()}:**\n\n{content}\n\n---\n\n") | |
log_info(f"Chat log saved to {self.log_file}") | |
except Exception as e: | |
log_error(f"ERROR Saving Chat Log: {e}", e) | |
raise | |
def clear_chat_history(self): | |
try: | |
self.chat_history = [] | |
log_info("Chat history cleared.") | |
except Exception as e: | |
log_error(f"ERROR Clearing Chat History: {e}", e) | |
raise | |
def print_chat_history(self): | |
try: | |
for entry in self.chat_history: | |
role = entry["role"] | |
content = entry["content"] | |
print(f"{role.capitalize()}: {content}\n") | |
log_info("Printed chat history to console.") | |
except Exception as e: | |
log_error(f"ERROR Printing Chat History: {e}", e) | |
raise |