Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,39 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import torch
|
4 |
-
|
5 |
-
# Model ve tokenizer'ı yükle
|
6 |
-
model_name = "
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
9 |
-
|
10 |
-
def generate_text(prompt, max_length=100, temperature=0.7):
|
11 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
12 |
-
|
13 |
-
# Parametrelerle birlikte çıktı üret
|
14 |
-
outputs = model.generate(
|
15 |
-
**inputs,
|
16 |
-
max_length=max_length,
|
17 |
-
temperature=temperature,
|
18 |
-
do_sample=True,
|
19 |
-
top_p=0.95,
|
20 |
-
top_k=50,
|
21 |
-
num_return_sequences=1
|
22 |
-
)
|
23 |
-
|
24 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
-
|
26 |
-
# Gradio arayüzünü oluştur
|
27 |
-
iface = gr.Interface(
|
28 |
-
fn=generate_text,
|
29 |
-
inputs=[
|
30 |
-
gr.Textbox(lines=3, label="Prompt"),
|
31 |
-
gr.Slider(minimum=10, maximum=500, value=100, step=1, label="Maksimum Uzunluk"),
|
32 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Sıcaklık")
|
33 |
-
],
|
34 |
-
outputs=gr.Textbox(label="Üretilen Metin"),
|
35 |
-
title="LLaMA 3.1 8B Metin Üreteci",
|
36 |
-
description="LLaMA 3.1 8B modeli kullanarak metin üretin."
|
37 |
-
)
|
38 |
-
|
39 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Model ve tokenizer'ı yükle
|
6 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B" # Doğru model adını buraya girin
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
9 |
+
|
10 |
+
def generate_text(prompt, max_length=100, temperature=0.7):
|
11 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
12 |
+
|
13 |
+
# Parametrelerle birlikte çıktı üret
|
14 |
+
outputs = model.generate(
|
15 |
+
**inputs,
|
16 |
+
max_length=max_length,
|
17 |
+
temperature=temperature,
|
18 |
+
do_sample=True,
|
19 |
+
top_p=0.95,
|
20 |
+
top_k=50,
|
21 |
+
num_return_sequences=1
|
22 |
+
)
|
23 |
+
|
24 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
# Gradio arayüzünü oluştur
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=generate_text,
|
29 |
+
inputs=[
|
30 |
+
gr.Textbox(lines=3, label="Prompt"),
|
31 |
+
gr.Slider(minimum=10, maximum=500, value=100, step=1, label="Maksimum Uzunluk"),
|
32 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Sıcaklık")
|
33 |
+
],
|
34 |
+
outputs=gr.Textbox(label="Üretilen Metin"),
|
35 |
+
title="LLaMA 3.1 8B Metin Üreteci",
|
36 |
+
description="LLaMA 3.1 8B modeli kullanarak metin üretin."
|
37 |
+
)
|
38 |
+
|
39 |
iface.launch()
|