Viihtorugo commited on
Commit
8436dd5
·
1 Parent(s): b53de58

Add the files

Browse files
Files changed (3) hide show
  1. app.py +17 -0
  2. requirements.txt +2 -0
  3. train.py +41 -0
app.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Carregar o modelo diretamente do Hugging Face Hub
5
+ classifier = pipeline("image-classification", model="mestrevh/computer-vision-cifar-10")
6
+
7
+ # Função de classificação
8
+ def predict_image(image):
9
+ return classifier(image)
10
+
11
+ # Interface Gradio
12
+ interface = gr.Interface(fn=predict_image,
13
+ inputs=gr.inputs.Image(type="pil"),
14
+ outputs="label",
15
+ live=True)
16
+
17
+ interface.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ transformers
2
+ gradio
train.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import Trainer, TrainingArguments
2
+ from datasets import load_dataset
3
+ from transformers import ViTForImageClassification, ViTFeatureExtractor
4
+
5
+ # Carregar o dataset (exemplo com o dataset CIFAR-10)
6
+ dataset = load_dataset("cifar10")
7
+
8
+ # Carregar o modelo pré-treinado e o feature extractor
9
+ model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k")
10
+ feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
11
+
12
+ # Preprocessamento
13
+ def preprocess_function(examples):
14
+ return feature_extractor(examples["image"], return_tensors="pt")
15
+
16
+ # Aplicando o preprocessamento ao dataset
17
+ dataset = dataset.map(preprocess_function, batched=True)
18
+
19
+ # Definir os parâmetros de treinamento
20
+ training_args = TrainingArguments(
21
+ output_dir="./results",
22
+ evaluation_strategy="epoch",
23
+ learning_rate=2e-5,
24
+ per_device_train_batch_size=16,
25
+ per_device_eval_batch_size=64,
26
+ num_train_epochs=3,
27
+ weight_decay=0.01,
28
+ )
29
+
30
+ trainer = Trainer(
31
+ model=model,
32
+ args=training_args,
33
+ train_dataset=dataset["train"],
34
+ eval_dataset=dataset["test"],
35
+ )
36
+
37
+ # Treinar o modelo
38
+ trainer.train()
39
+
40
+ model.save_pretrained("./computer-vision-cifar-10")
41
+ feature_extractor.save_pretrained("./computer-vision-cifar-10")