File size: 1,923 Bytes
1d51d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from huggingface_hub import from_pretrained_keras
import gradio as gr
import tensorflow as tf
import numpy as np
import os

model = tf.keras.models.load_model(os.path.join(path, "tf_model.h5"))

inputs = gr.inputs.Image()
output = gr.outputs.Image()


def predict(image_input):
  img = np.array(inputs)

        im = tf.image.resize(img, (128, 128))
        im = tf.cast(im, tf.float32) / 255.0
        pred_mask = self.model.predict(im[tf.newaxis, ...])
        
        # take the best performing class for each pixel
        # the output of argmax looks like this [[1, 2, 0], ...]
        pred_mask_arg = tf.argmax(pred_mask, axis=-1)

        labels = []
        
        # convert the prediction mask into binary masks for each class
        binary_masks = {}
        mask_codes = {}
        
        # when we take tf.argmax() over pred_mask, it becomes a tensor object
        # the shape becomes TensorShape object, looking like this TensorShape([128]) 
        # we need to take get shape, convert to list and take the best one
        
        rows = pred_mask_arg[0][1].get_shape().as_list()[0]
        cols = pred_mask_arg[0][2].get_shape().as_list()[0]
        
        for cls in range(pred_mask.shape[-1]):

            binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
            
            for row in range(rows):

                for col in range(cols):

                    if pred_mask_arg[0][row][col] == cls:
                        
                        binary_masks[f"mask_{cls}"][row][col] = 1
                    else:
                        binary_masks[f"mask_{cls}"][row][col] = 0

            mask = binary_masks[f"mask_{cls}"]
            mask *= 255
            img = Image.fromarray(mask.astype(np.int8), mode="L")
            return img
  
  
  
  
gr.Interface(predict, inputs = inputs, outputs = output).launch()