|
|
|
(function webpackUniversalModuleDefinition(root, factory) { |
|
if(typeof exports === 'object' && typeof module === 'object') |
|
module.exports = factory(); |
|
else if(typeof define === 'function' && define.amd) |
|
define([], factory); |
|
else { |
|
var a = factory(); |
|
for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i]; |
|
} |
|
})(window, function() { |
|
return (function(modules) { |
|
|
|
var installedModules = {}; |
|
|
|
|
|
function __webpack_require__(moduleId) { |
|
|
|
|
|
if(installedModules[moduleId]) { |
|
return installedModules[moduleId].exports; |
|
} |
|
|
|
var module = installedModules[moduleId] = { |
|
i: moduleId, |
|
l: false, |
|
exports: {} |
|
}; |
|
|
|
|
|
modules[moduleId].call(module.exports, module, module.exports, __webpack_require__); |
|
|
|
|
|
module.l = true; |
|
|
|
|
|
return module.exports; |
|
} |
|
|
|
|
|
|
|
__webpack_require__.m = modules; |
|
|
|
|
|
__webpack_require__.c = installedModules; |
|
|
|
|
|
__webpack_require__.d = function(exports, name, getter) { |
|
if(!__webpack_require__.o(exports, name)) { |
|
Object.defineProperty(exports, name, { enumerable: true, get: getter }); |
|
} |
|
}; |
|
|
|
|
|
__webpack_require__.r = function(exports) { |
|
if(typeof Symbol !== 'undefined' && Symbol.toStringTag) { |
|
Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' }); |
|
} |
|
Object.defineProperty(exports, '__esModule', { value: true }); |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
__webpack_require__.t = function(value, mode) { |
|
if(mode & 1) value = __webpack_require__(value); |
|
if(mode & 8) return value; |
|
if((mode & 4) && typeof value === 'object' && value && value.__esModule) return value; |
|
var ns = Object.create(null); |
|
__webpack_require__.r(ns); |
|
Object.defineProperty(ns, 'default', { enumerable: true, value: value }); |
|
if(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key)); |
|
return ns; |
|
}; |
|
|
|
|
|
__webpack_require__.n = function(module) { |
|
var getter = module && module.__esModule ? |
|
function getDefault() { return module['default']; } : |
|
function getModuleExports() { return module; }; |
|
__webpack_require__.d(getter, 'a', getter); |
|
return getter; |
|
}; |
|
|
|
|
|
__webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); }; |
|
|
|
|
|
__webpack_require__.p = ""; |
|
|
|
|
|
|
|
return __webpack_require__(__webpack_require__.s = 5); |
|
}) |
|
|
|
([ |
|
|
|
(function(module, exports, __webpack_require__) { |
|
|
|
"use strict"; |
|
|
|
|
|
const toString = Object.prototype.toString; |
|
|
|
function isAnyArray(object) { |
|
return toString.call(object).endsWith('Array]'); |
|
} |
|
|
|
module.exports = isAnyArray; |
|
|
|
|
|
}), |
|
|
|
(function(module, exports, __webpack_require__) { |
|
|
|
"use strict"; |
|
|
|
var __values = (this && this.__values) || function (o) { |
|
var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0; |
|
if (m) return m.call(o); |
|
return { |
|
next: function () { |
|
if (o && i >= o.length) o = void 0; |
|
return { value: o && o[i++], done: !o }; |
|
} |
|
}; |
|
}; |
|
Object.defineProperty(exports, "__esModule", { value: true }); |
|
function tauRandInt(n, random) { |
|
return Math.floor(random() * n); |
|
} |
|
exports.tauRandInt = tauRandInt; |
|
function tauRand(random) { |
|
return random(); |
|
} |
|
exports.tauRand = tauRand; |
|
function norm(vec) { |
|
var e_1, _a; |
|
var result = 0; |
|
try { |
|
for (var vec_1 = __values(vec), vec_1_1 = vec_1.next(); !vec_1_1.done; vec_1_1 = vec_1.next()) { |
|
var item = vec_1_1.value; |
|
result += Math.pow(item, 2); |
|
} |
|
} |
|
catch (e_1_1) { e_1 = { error: e_1_1 }; } |
|
finally { |
|
try { |
|
if (vec_1_1 && !vec_1_1.done && (_a = vec_1.return)) _a.call(vec_1); |
|
} |
|
finally { if (e_1) throw e_1.error; } |
|
} |
|
return Math.sqrt(result); |
|
} |
|
exports.norm = norm; |
|
function empty(n) { |
|
var output = []; |
|
for (var i = 0; i < n; i++) { |
|
output.push(undefined); |
|
} |
|
return output; |
|
} |
|
exports.empty = empty; |
|
function range(n) { |
|
return empty(n).map(function (_, i) { return i; }); |
|
} |
|
exports.range = range; |
|
function filled(n, v) { |
|
return empty(n).map(function () { return v; }); |
|
} |
|
exports.filled = filled; |
|
function zeros(n) { |
|
return filled(n, 0); |
|
} |
|
exports.zeros = zeros; |
|
function ones(n) { |
|
return filled(n, 1); |
|
} |
|
exports.ones = ones; |
|
function linear(a, b, len) { |
|
return empty(len).map(function (_, i) { |
|
return a + i * ((b - a) / (len - 1)); |
|
}); |
|
} |
|
exports.linear = linear; |
|
function sum(input) { |
|
return input.reduce(function (sum, val) { return sum + val; }); |
|
} |
|
exports.sum = sum; |
|
function mean(input) { |
|
return sum(input) / input.length; |
|
} |
|
exports.mean = mean; |
|
function max(input) { |
|
var max = 0; |
|
for (var i = 0; i < input.length; i++) { |
|
max = input[i] > max ? input[i] : max; |
|
} |
|
return max; |
|
} |
|
exports.max = max; |
|
function max2d(input) { |
|
var max = 0; |
|
for (var i = 0; i < input.length; i++) { |
|
for (var j = 0; j < input[i].length; j++) { |
|
max = input[i][j] > max ? input[i][j] : max; |
|
} |
|
} |
|
return max; |
|
} |
|
exports.max2d = max2d; |
|
function rejectionSample(nSamples, poolSize, random) { |
|
var result = zeros(nSamples); |
|
for (var i = 0; i < nSamples; i++) { |
|
var rejectSample = true; |
|
while (rejectSample) { |
|
var j = tauRandInt(poolSize, random); |
|
var broken = false; |
|
for (var k = 0; k < i; k++) { |
|
if (j === result[k]) { |
|
broken = true; |
|
break; |
|
} |
|
} |
|
if (!broken) { |
|
rejectSample = false; |
|
} |
|
result[i] = j; |
|
} |
|
} |
|
return result; |
|
} |
|
exports.rejectionSample = rejectionSample; |
|
function reshape2d(x, a, b) { |
|
var rows = []; |
|
var count = 0; |
|
var index = 0; |
|
if (x.length !== a * b) { |
|
throw new Error('Array dimensions must match input length.'); |
|
} |
|
for (var i = 0; i < a; i++) { |
|
var col = []; |
|
for (var j = 0; j < b; j++) { |
|
col.push(x[index]); |
|
index += 1; |
|
} |
|
rows.push(col); |
|
count += 1; |
|
} |
|
return rows; |
|
} |
|
exports.reshape2d = reshape2d; |
|
|
|
|
|
}), |
|
|
|
(function(module, exports, __webpack_require__) { |
|
|
|
"use strict"; |
|
|
|
var __importStar = (this && this.__importStar) || function (mod) { |
|
if (mod && mod.__esModule) return mod; |
|
var result = {}; |
|
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; |
|
result["default"] = mod; |
|
return result; |
|
}; |
|
Object.defineProperty(exports, "__esModule", { value: true }); |
|
var utils = __importStar(__webpack_require__(1)); |
|
function makeHeap(nPoints, size) { |
|
var makeArrays = function (fillValue) { |
|
return utils.empty(nPoints).map(function () { |
|
return utils.filled(size, fillValue); |
|
}); |
|
}; |
|
var heap = []; |
|
heap.push(makeArrays(-1)); |
|
heap.push(makeArrays(Infinity)); |
|
heap.push(makeArrays(0)); |
|
return heap; |
|
} |
|
exports.makeHeap = makeHeap; |
|
function rejectionSample(nSamples, poolSize, random) { |
|
var result = utils.zeros(nSamples); |
|
for (var i = 0; i < nSamples; i++) { |
|
var rejectSample = true; |
|
var j = 0; |
|
while (rejectSample) { |
|
j = utils.tauRandInt(poolSize, random); |
|
var broken = false; |
|
for (var k = 0; k < i; k++) { |
|
if (j === result[k]) { |
|
broken = true; |
|
break; |
|
} |
|
} |
|
if (!broken) |
|
rejectSample = false; |
|
} |
|
result[i] = j; |
|
} |
|
return result; |
|
} |
|
exports.rejectionSample = rejectionSample; |
|
function heapPush(heap, row, weight, index, flag) { |
|
row = Math.floor(row); |
|
var indices = heap[0][row]; |
|
var weights = heap[1][row]; |
|
var isNew = heap[2][row]; |
|
if (weight >= weights[0]) { |
|
return 0; |
|
} |
|
for (var i = 0; i < indices.length; i++) { |
|
if (index === indices[i]) { |
|
return 0; |
|
} |
|
} |
|
return uncheckedHeapPush(heap, row, weight, index, flag); |
|
} |
|
exports.heapPush = heapPush; |
|
function uncheckedHeapPush(heap, row, weight, index, flag) { |
|
var indices = heap[0][row]; |
|
var weights = heap[1][row]; |
|
var isNew = heap[2][row]; |
|
if (weight >= weights[0]) { |
|
return 0; |
|
} |
|
weights[0] = weight; |
|
indices[0] = index; |
|
isNew[0] = flag; |
|
var i = 0; |
|
var iSwap = 0; |
|
while (true) { |
|
var ic1 = 2 * i + 1; |
|
var ic2 = ic1 + 1; |
|
var heapShape2 = heap[0][0].length; |
|
if (ic1 >= heapShape2) { |
|
break; |
|
} |
|
else if (ic2 >= heapShape2) { |
|
if (weights[ic1] > weight) { |
|
iSwap = ic1; |
|
} |
|
else { |
|
break; |
|
} |
|
} |
|
else if (weights[ic1] >= weights[ic2]) { |
|
if (weight < weights[ic1]) { |
|
iSwap = ic1; |
|
} |
|
else { |
|
break; |
|
} |
|
} |
|
else { |
|
if (weight < weights[ic2]) { |
|
iSwap = ic2; |
|
} |
|
else { |
|
break; |
|
} |
|
} |
|
weights[i] = weights[iSwap]; |
|
indices[i] = indices[iSwap]; |
|
isNew[i] = isNew[iSwap]; |
|
i = iSwap; |
|
} |
|
weights[i] = weight; |
|
indices[i] = index; |
|
isNew[i] = flag; |
|
return 1; |
|
} |
|
exports.uncheckedHeapPush = uncheckedHeapPush; |
|
function buildCandidates(currentGraph, nVertices, nNeighbors, maxCandidates, random) { |
|
var candidateNeighbors = makeHeap(nVertices, maxCandidates); |
|
for (var i = 0; i < nVertices; i++) { |
|
for (var j = 0; j < nNeighbors; j++) { |
|
if (currentGraph[0][i][j] < 0) { |
|
continue; |
|
} |
|
var idx = currentGraph[0][i][j]; |
|
var isn = currentGraph[2][i][j]; |
|
var d = utils.tauRand(random); |
|
heapPush(candidateNeighbors, i, d, idx, isn); |
|
heapPush(candidateNeighbors, idx, d, i, isn); |
|
currentGraph[2][i][j] = 0; |
|
} |
|
} |
|
return candidateNeighbors; |
|
} |
|
exports.buildCandidates = buildCandidates; |
|
function deheapSort(heap) { |
|
var indices = heap[0]; |
|
var weights = heap[1]; |
|
for (var i = 0; i < indices.length; i++) { |
|
var indHeap = indices[i]; |
|
var distHeap = weights[i]; |
|
for (var j = 0; j < indHeap.length - 1; j++) { |
|
var indHeapIndex = indHeap.length - j - 1; |
|
var distHeapIndex = distHeap.length - j - 1; |
|
var temp1 = indHeap[0]; |
|
indHeap[0] = indHeap[indHeapIndex]; |
|
indHeap[indHeapIndex] = temp1; |
|
var temp2 = distHeap[0]; |
|
distHeap[0] = distHeap[distHeapIndex]; |
|
distHeap[distHeapIndex] = temp2; |
|
siftDown(distHeap, indHeap, distHeapIndex, 0); |
|
} |
|
} |
|
return { indices: indices, weights: weights }; |
|
} |
|
exports.deheapSort = deheapSort; |
|
function siftDown(heap1, heap2, ceiling, elt) { |
|
while (elt * 2 + 1 < ceiling) { |
|
var leftChild = elt * 2 + 1; |
|
var rightChild = leftChild + 1; |
|
var swap = elt; |
|
if (heap1[swap] < heap1[leftChild]) { |
|
swap = leftChild; |
|
} |
|
if (rightChild < ceiling && heap1[swap] < heap1[rightChild]) { |
|
swap = rightChild; |
|
} |
|
if (swap === elt) { |
|
break; |
|
} |
|
else { |
|
var temp1 = heap1[elt]; |
|
heap1[elt] = heap1[swap]; |
|
heap1[swap] = temp1; |
|
var temp2 = heap2[elt]; |
|
heap2[elt] = heap2[swap]; |
|
heap2[swap] = temp2; |
|
elt = swap; |
|
} |
|
} |
|
} |
|
function smallestFlagged(heap, row) { |
|
var ind = heap[0][row]; |
|
var dist = heap[1][row]; |
|
var flag = heap[2][row]; |
|
var minDist = Infinity; |
|
var resultIndex = -1; |
|
for (var i = 0; i > ind.length; i++) { |
|
if (flag[i] === 1 && dist[i] < minDist) { |
|
minDist = dist[i]; |
|
resultIndex = i; |
|
} |
|
} |
|
if (resultIndex >= 0) { |
|
flag[resultIndex] = 0; |
|
return Math.floor(ind[resultIndex]); |
|
} |
|
else { |
|
return -1; |
|
} |
|
} |
|
exports.smallestFlagged = smallestFlagged; |
|
|
|
|
|
}), |
|
|
|
(function(module, exports, __webpack_require__) { |
|
|
|
"use strict"; |
|
|
|
var __read = (this && this.__read) || function (o, n) { |
|
var m = typeof Symbol === "function" && o[Symbol.iterator]; |
|
if (!m) return o; |
|
var i = m.call(o), r, ar = [], e; |
|
try { |
|
while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); |
|
} |
|
catch (error) { e = { error: error }; } |
|
finally { |
|
try { |
|
if (r && !r.done && (m = i["return"])) m.call(i); |
|
} |
|
finally { if (e) throw e.error; } |
|
} |
|
return ar; |
|
}; |
|
var __spread = (this && this.__spread) || function () { |
|
for (var ar = [], i = 0; i < arguments.length; i++) ar = ar.concat(__read(arguments[i])); |
|
return ar; |
|
}; |
|
var __values = (this && this.__values) || function (o) { |
|
var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0; |
|
if (m) return m.call(o); |
|
return { |
|
next: function () { |
|
if (o && i >= o.length) o = void 0; |
|
return { value: o && o[i++], done: !o }; |
|
} |
|
}; |
|
}; |
|
var __importStar = (this && this.__importStar) || function (mod) { |
|
if (mod && mod.__esModule) return mod; |
|
var result = {}; |
|
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; |
|
result["default"] = mod; |
|
return result; |
|
}; |
|
Object.defineProperty(exports, "__esModule", { value: true }); |
|
var _a; |
|
var utils = __importStar(__webpack_require__(1)); |
|
var SparseMatrix = (function () { |
|
function SparseMatrix(rows, cols, values, dims) { |
|
this.entries = new Map(); |
|
this.nRows = 0; |
|
this.nCols = 0; |
|
this.rows = __spread(rows); |
|
this.cols = __spread(cols); |
|
this.values = __spread(values); |
|
for (var i = 0; i < values.length; i++) { |
|
var key = this.makeKey(this.rows[i], this.cols[i]); |
|
this.entries.set(key, i); |
|
} |
|
this.nRows = dims[0]; |
|
this.nCols = dims[1]; |
|
} |
|
SparseMatrix.prototype.makeKey = function (row, col) { |
|
return row + ":" + col; |
|
}; |
|
SparseMatrix.prototype.checkDims = function (row, col) { |
|
var withinBounds = row < this.nRows && col < this.nCols; |
|
if (!withinBounds) { |
|
throw new Error('array index out of bounds'); |
|
} |
|
}; |
|
SparseMatrix.prototype.set = function (row, col, value) { |
|
this.checkDims(row, col); |
|
var key = this.makeKey(row, col); |
|
if (!this.entries.has(key)) { |
|
this.rows.push(row); |
|
this.cols.push(col); |
|
this.values.push(value); |
|
this.entries.set(key, this.values.length - 1); |
|
} |
|
else { |
|
var index = this.entries.get(key); |
|
this.values[index] = value; |
|
} |
|
}; |
|
SparseMatrix.prototype.get = function (row, col, defaultValue) { |
|
if (defaultValue === void 0) { defaultValue = 0; } |
|
this.checkDims(row, col); |
|
var key = this.makeKey(row, col); |
|
if (this.entries.has(key)) { |
|
var index = this.entries.get(key); |
|
return this.values[index]; |
|
} |
|
else { |
|
return defaultValue; |
|
} |
|
}; |
|
SparseMatrix.prototype.getDims = function () { |
|
return [this.nRows, this.nCols]; |
|
}; |
|
SparseMatrix.prototype.getRows = function () { |
|
return __spread(this.rows); |
|
}; |
|
SparseMatrix.prototype.getCols = function () { |
|
return __spread(this.cols); |
|
}; |
|
SparseMatrix.prototype.getValues = function () { |
|
return __spread(this.values); |
|
}; |
|
SparseMatrix.prototype.forEach = function (fn) { |
|
for (var i = 0; i < this.values.length; i++) { |
|
fn(this.values[i], this.rows[i], this.cols[i]); |
|
} |
|
}; |
|
SparseMatrix.prototype.map = function (fn) { |
|
var vals = []; |
|
for (var i = 0; i < this.values.length; i++) { |
|
vals.push(fn(this.values[i], this.rows[i], this.cols[i])); |
|
} |
|
var dims = [this.nRows, this.nCols]; |
|
return new SparseMatrix(this.rows, this.cols, vals, dims); |
|
}; |
|
SparseMatrix.prototype.toArray = function () { |
|
var _this = this; |
|
var rows = utils.empty(this.nRows); |
|
var output = rows.map(function () { |
|
return utils.zeros(_this.nCols); |
|
}); |
|
for (var i = 0; i < this.values.length; i++) { |
|
output[this.rows[i]][this.cols[i]] = this.values[i]; |
|
} |
|
return output; |
|
}; |
|
return SparseMatrix; |
|
}()); |
|
exports.SparseMatrix = SparseMatrix; |
|
function transpose(matrix) { |
|
var cols = []; |
|
var rows = []; |
|
var vals = []; |
|
matrix.forEach(function (value, row, col) { |
|
cols.push(row); |
|
rows.push(col); |
|
vals.push(value); |
|
}); |
|
var dims = [matrix.nCols, matrix.nRows]; |
|
return new SparseMatrix(rows, cols, vals, dims); |
|
} |
|
exports.transpose = transpose; |
|
function identity(size) { |
|
var _a = __read(size, 1), rows = _a[0]; |
|
var matrix = new SparseMatrix([], [], [], size); |
|
for (var i = 0; i < rows; i++) { |
|
matrix.set(i, i, 1); |
|
} |
|
return matrix; |
|
} |
|
exports.identity = identity; |
|
function pairwiseMultiply(a, b) { |
|
return elementWise(a, b, function (x, y) { return x * y; }); |
|
} |
|
exports.pairwiseMultiply = pairwiseMultiply; |
|
function add(a, b) { |
|
return elementWise(a, b, function (x, y) { return x + y; }); |
|
} |
|
exports.add = add; |
|
function subtract(a, b) { |
|
return elementWise(a, b, function (x, y) { return x - y; }); |
|
} |
|
exports.subtract = subtract; |
|
function maximum(a, b) { |
|
return elementWise(a, b, function (x, y) { return (x > y ? x : y); }); |
|
} |
|
exports.maximum = maximum; |
|
function multiplyScalar(a, scalar) { |
|
return a.map(function (value) { |
|
return value * scalar; |
|
}); |
|
} |
|
exports.multiplyScalar = multiplyScalar; |
|
function eliminateZeros(m) { |
|
var zeroIndices = new Set(); |
|
var values = m.getValues(); |
|
var rows = m.getRows(); |
|
var cols = m.getCols(); |
|
for (var i = 0; i < values.length; i++) { |
|
if (values[i] === 0) { |
|
zeroIndices.add(i); |
|
} |
|
} |
|
var removeByZeroIndex = function (_, index) { return !zeroIndices.has(index); }; |
|
var nextValues = values.filter(removeByZeroIndex); |
|
var nextRows = rows.filter(removeByZeroIndex); |
|
var nextCols = cols.filter(removeByZeroIndex); |
|
return new SparseMatrix(nextRows, nextCols, nextValues, m.getDims()); |
|
} |
|
exports.eliminateZeros = eliminateZeros; |
|
function normalize(m, normType) { |
|
if (normType === void 0) { normType = "l2"; } |
|
var e_1, _a; |
|
var normFn = normFns[normType]; |
|
var colsByRow = new Map(); |
|
m.forEach(function (_, row, col) { |
|
var cols = colsByRow.get(row) || []; |
|
cols.push(col); |
|
colsByRow.set(row, cols); |
|
}); |
|
var nextMatrix = new SparseMatrix([], [], [], m.getDims()); |
|
var _loop_1 = function (row) { |
|
var cols = colsByRow.get(row).sort(); |
|
var vals = cols.map(function (col) { return m.get(row, col); }); |
|
var norm = normFn(vals); |
|
for (var i = 0; i < norm.length; i++) { |
|
nextMatrix.set(row, cols[i], norm[i]); |
|
} |
|
}; |
|
try { |
|
for (var _b = __values(colsByRow.keys()), _c = _b.next(); !_c.done; _c = _b.next()) { |
|
var row = _c.value; |
|
_loop_1(row); |
|
} |
|
} |
|
catch (e_1_1) { e_1 = { error: e_1_1 }; } |
|
finally { |
|
try { |
|
if (_c && !_c.done && (_a = _b.return)) _a.call(_b); |
|
} |
|
finally { if (e_1) throw e_1.error; } |
|
} |
|
return nextMatrix; |
|
} |
|
exports.normalize = normalize; |
|
var normFns = (_a = {}, |
|
_a["max"] = function (xs) { |
|
var max = -Infinity; |
|
for (var i = 0; i < xs.length; i++) { |
|
max = xs[i] > max ? xs[i] : max; |
|
} |
|
return xs.map(function (x) { return x / max; }); |
|
}, |
|
_a["l1"] = function (xs) { |
|
var sum = 0; |
|
for (var i = 0; i < xs.length; i++) { |
|
sum += xs[i]; |
|
} |
|
return xs.map(function (x) { return x / sum; }); |
|
}, |
|
_a["l2"] = function (xs) { |
|
var sum = 0; |
|
for (var i = 0; i < xs.length; i++) { |
|
sum += Math.pow(xs[i], 2); |
|
} |
|
return xs.map(function (x) { return Math.sqrt(Math.pow(x, 2) / sum); }); |
|
}, |
|
_a); |
|
function elementWise(a, b, op) { |
|
var visited = new Set(); |
|
var rows = []; |
|
var cols = []; |
|
var vals = []; |
|
var operate = function (row, col) { |
|
rows.push(row); |
|
cols.push(col); |
|
var nextValue = op(a.get(row, col), b.get(row, col)); |
|
vals.push(nextValue); |
|
}; |
|
var valuesA = a.getValues(); |
|
var rowsA = a.getRows(); |
|
var colsA = a.getCols(); |
|
for (var i = 0; i < valuesA.length; i++) { |
|
var row = rowsA[i]; |
|
var col = colsA[i]; |
|
var key = row + ":" + col; |
|
visited.add(key); |
|
operate(row, col); |
|
} |
|
var valuesB = b.getValues(); |
|
var rowsB = b.getRows(); |
|
var colsB = b.getCols(); |
|
for (var i = 0; i < valuesB.length; i++) { |
|
var row = rowsB[i]; |
|
var col = colsB[i]; |
|
var key = row + ":" + col; |
|
if (visited.has(key)) |
|
continue; |
|
operate(row, col); |
|
} |
|
var dims = [a.nRows, a.nCols]; |
|
return new SparseMatrix(rows, cols, vals, dims); |
|
} |
|
function getCSR(x) { |
|
var entries = []; |
|
x.forEach(function (value, row, col) { |
|
entries.push({ value: value, row: row, col: col }); |
|
}); |
|
entries.sort(function (a, b) { |
|
if (a.row === b.row) { |
|
return a.col - b.col; |
|
} |
|
else { |
|
return a.row - b.col; |
|
} |
|
}); |
|
var indices = []; |
|
var values = []; |
|
var indptr = []; |
|
var currentRow = -1; |
|
for (var i = 0; i < entries.length; i++) { |
|
var _a = entries[i], row = _a.row, col = _a.col, value = _a.value; |
|
if (row !== currentRow) { |
|
currentRow = row; |
|
indptr.push(i); |
|
} |
|
indices.push(col); |
|
values.push(value); |
|
} |
|
return { indices: indices, values: values, indptr: indptr }; |
|
} |
|
exports.getCSR = getCSR; |
|
|
|
|
|
}), |
|
|
|
(function(module, exports, __webpack_require__) { |
|
|
|
"use strict"; |
|
|
|
var __read = (this && this.__read) || function (o, n) { |
|
var m = typeof Symbol === "function" && o[Symbol.iterator]; |
|
if (!m) return o; |
|
var i = m.call(o), r, ar = [], e; |
|
try { |
|
while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); |
|
} |
|
catch (error) { e = { error: error }; } |
|
finally { |
|
try { |
|
if (r && !r.done && (m = i["return"])) m.call(i); |
|
} |
|
finally { if (e) throw e.error; } |
|
} |
|
return ar; |
|
}; |
|
var __spread = (this && this.__spread) || function () { |
|
for (var ar = [], i = 0; i < arguments.length; i++) ar = ar.concat(__read(arguments[i])); |
|
return ar; |
|
}; |
|
var __values = (this && this.__values) || function (o) { |
|
var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0; |
|
if (m) return m.call(o); |
|
return { |
|
next: function () { |
|
if (o && i >= o.length) o = void 0; |
|
return { value: o && o[i++], done: !o }; |
|
} |
|
}; |
|
}; |
|
var __importStar = (this && this.__importStar) || function (mod) { |
|
if (mod && mod.__esModule) return mod; |
|
var result = {}; |
|
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; |
|
result["default"] = mod; |
|
return result; |
|
}; |
|
Object.defineProperty(exports, "__esModule", { value: true }); |
|
var utils = __importStar(__webpack_require__(1)); |
|
var FlatTree = (function () { |
|
function FlatTree(hyperplanes, offsets, children, indices) { |
|
this.hyperplanes = hyperplanes; |
|
this.offsets = offsets; |
|
this.children = children; |
|
this.indices = indices; |
|
} |
|
return FlatTree; |
|
}()); |
|
exports.FlatTree = FlatTree; |
|
function makeForest(data, nNeighbors, nTrees, random) { |
|
var leafSize = Math.max(10, nNeighbors); |
|
var trees = utils |
|
.range(nTrees) |
|
.map(function (_, i) { return makeTree(data, leafSize, i, random); }); |
|
var forest = trees.map(function (tree) { return flattenTree(tree, leafSize); }); |
|
return forest; |
|
} |
|
exports.makeForest = makeForest; |
|
function makeTree(data, leafSize, n, random) { |
|
if (leafSize === void 0) { leafSize = 30; } |
|
var indices = utils.range(data.length); |
|
var tree = makeEuclideanTree(data, indices, leafSize, n, random); |
|
return tree; |
|
} |
|
function makeEuclideanTree(data, indices, leafSize, q, random) { |
|
if (leafSize === void 0) { leafSize = 30; } |
|
if (indices.length > leafSize) { |
|
var splitResults = euclideanRandomProjectionSplit(data, indices, random); |
|
var indicesLeft = splitResults.indicesLeft, indicesRight = splitResults.indicesRight, hyperplane = splitResults.hyperplane, offset = splitResults.offset; |
|
var leftChild = makeEuclideanTree(data, indicesLeft, leafSize, q + 1, random); |
|
var rightChild = makeEuclideanTree(data, indicesRight, leafSize, q + 1, random); |
|
var node = { leftChild: leftChild, rightChild: rightChild, isLeaf: false, hyperplane: hyperplane, offset: offset }; |
|
return node; |
|
} |
|
else { |
|
var node = { indices: indices, isLeaf: true }; |
|
return node; |
|
} |
|
} |
|
function euclideanRandomProjectionSplit(data, indices, random) { |
|
var dim = data[0].length; |
|
var leftIndex = utils.tauRandInt(indices.length, random); |
|
var rightIndex = utils.tauRandInt(indices.length, random); |
|
rightIndex += leftIndex === rightIndex ? 1 : 0; |
|
rightIndex = rightIndex % indices.length; |
|
var left = indices[leftIndex]; |
|
var right = indices[rightIndex]; |
|
var hyperplaneOffset = 0; |
|
var hyperplaneVector = utils.zeros(dim); |
|
for (var i = 0; i < hyperplaneVector.length; i++) { |
|
hyperplaneVector[i] = data[left][i] - data[right][i]; |
|
hyperplaneOffset -= |
|
(hyperplaneVector[i] * (data[left][i] + data[right][i])) / 2.0; |
|
} |
|
var nLeft = 0; |
|
var nRight = 0; |
|
var side = utils.zeros(indices.length); |
|
for (var i = 0; i < indices.length; i++) { |
|
var margin = hyperplaneOffset; |
|
for (var d = 0; d < dim; d++) { |
|
margin += hyperplaneVector[d] * data[indices[i]][d]; |
|
} |
|
if (margin === 0) { |
|
side[i] = utils.tauRandInt(2, random); |
|
if (side[i] === 0) { |
|
nLeft += 1; |
|
} |
|
else { |
|
nRight += 1; |
|
} |
|
} |
|
else if (margin > 0) { |
|
side[i] = 0; |
|
nLeft += 1; |
|
} |
|
else { |
|
side[i] = 1; |
|
nRight += 1; |
|
} |
|
} |
|
var indicesLeft = utils.zeros(nLeft); |
|
var indicesRight = utils.zeros(nRight); |
|
nLeft = 0; |
|
nRight = 0; |
|
for (var i in utils.range(side.length)) { |
|
if (side[i] === 0) { |
|
indicesLeft[nLeft] = indices[i]; |
|
nLeft += 1; |
|
} |
|
else { |
|
indicesRight[nRight] = indices[i]; |
|
nRight += 1; |
|
} |
|
} |
|
return { |
|
indicesLeft: indicesLeft, |
|
indicesRight: indicesRight, |
|
hyperplane: hyperplaneVector, |
|
offset: hyperplaneOffset, |
|
}; |
|
} |
|
function flattenTree(tree, leafSize) { |
|
var nNodes = numNodes(tree); |
|
var nLeaves = numLeaves(tree); |
|
var hyperplanes = utils |
|
.range(nNodes) |
|
.map(function () { return utils.zeros(tree.hyperplane.length); }); |
|
var offsets = utils.zeros(nNodes); |
|
var children = utils.range(nNodes).map(function () { return [-1, -1]; }); |
|
var indices = utils |
|
.range(nLeaves) |
|
.map(function () { return utils.range(leafSize).map(function () { return -1; }); }); |
|
recursiveFlatten(tree, hyperplanes, offsets, children, indices, 0, 0); |
|
return new FlatTree(hyperplanes, offsets, children, indices); |
|
} |
|
function recursiveFlatten(tree, hyperplanes, offsets, children, indices, nodeNum, leafNum) { |
|
var _a; |
|
if (tree.isLeaf) { |
|
children[nodeNum][0] = -leafNum; |
|
(_a = indices[leafNum]).splice.apply(_a, __spread([0, tree.indices.length], tree.indices)); |
|
leafNum += 1; |
|
return { nodeNum: nodeNum, leafNum: leafNum }; |
|
} |
|
else { |
|
hyperplanes[nodeNum] = tree.hyperplane; |
|
offsets[nodeNum] = tree.offset; |
|
children[nodeNum][0] = nodeNum + 1; |
|
var oldNodeNum = nodeNum; |
|
var res = recursiveFlatten(tree.leftChild, hyperplanes, offsets, children, indices, nodeNum + 1, leafNum); |
|
nodeNum = res.nodeNum; |
|
leafNum = res.leafNum; |
|
children[oldNodeNum][1] = nodeNum + 1; |
|
res = recursiveFlatten(tree.rightChild, hyperplanes, offsets, children, indices, nodeNum + 1, leafNum); |
|
return { nodeNum: res.nodeNum, leafNum: res.leafNum }; |
|
} |
|
} |
|
function numNodes(tree) { |
|
if (tree.isLeaf) { |
|
return 1; |
|
} |
|
else { |
|
return 1 + numNodes(tree.leftChild) + numNodes(tree.rightChild); |
|
} |
|
} |
|
function numLeaves(tree) { |
|
if (tree.isLeaf) { |
|
return 1; |
|
} |
|
else { |
|
return numLeaves(tree.leftChild) + numLeaves(tree.rightChild); |
|
} |
|
} |
|
function makeLeafArray(rpForest) { |
|
var e_1, _a; |
|
if (rpForest.length > 0) { |
|
var output = []; |
|
try { |
|
for (var rpForest_1 = __values(rpForest), rpForest_1_1 = rpForest_1.next(); !rpForest_1_1.done; rpForest_1_1 = rpForest_1.next()) { |
|
var tree = rpForest_1_1.value; |
|
output.push.apply(output, __spread(tree.indices)); |
|
} |
|
} |
|
catch (e_1_1) { e_1 = { error: e_1_1 }; } |
|
finally { |
|
try { |
|
if (rpForest_1_1 && !rpForest_1_1.done && (_a = rpForest_1.return)) _a.call(rpForest_1); |
|
} |
|
finally { if (e_1) throw e_1.error; } |
|
} |
|
return output; |
|
} |
|
else { |
|
return [[-1]]; |
|
} |
|
} |
|
exports.makeLeafArray = makeLeafArray; |
|
function selectSide(hyperplane, offset, point, random) { |
|
var margin = offset; |
|
for (var d = 0; d < point.length; d++) { |
|
margin += hyperplane[d] * point[d]; |
|
} |
|
if (margin === 0) { |
|
var side = utils.tauRandInt(2, random); |
|
return side; |
|
} |
|
else if (margin > 0) { |
|
return 0; |
|
} |
|
else { |
|
return 1; |
|
} |
|
} |
|
function searchFlatTree(point, tree, random) { |
|
var node = 0; |
|
while (tree.children[node][0] > 0) { |
|
var side = selectSide(tree.hyperplanes[node], tree.offsets[node], point, random); |
|
if (side === 0) { |
|
node = tree.children[node][0]; |
|
} |
|
else { |
|
node = tree.children[node][1]; |
|
} |
|
} |
|
var index = -1 * tree.children[node][0]; |
|
return tree.indices[index]; |
|
} |
|
exports.searchFlatTree = searchFlatTree; |
|
|
|
|
|
}), |
|
|
|
(function(module, exports, __webpack_require__) { |
|
|
|
"use strict"; |
|
|
|
Object.defineProperty(exports, "__esModule", { value: true }); |
|
var umap_1 = __webpack_require__(6); |
|
exports.UMAP = umap_1.UMAP; |
|
|
|
|
|
}), |
|
|
|
(function(module, exports, __webpack_require__) { |
|
|
|
"use strict"; |
|
|
|
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { |
|
return new (P || (P = Promise))(function (resolve, reject) { |
|
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } |
|
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } |
|
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } |
|
step((generator = generator.apply(thisArg, _arguments || [])).next()); |
|
}); |
|
}; |
|
var __generator = (this && this.__generator) || function (thisArg, body) { |
|
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; |
|
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; |
|
function verb(n) { return function (v) { return step([n, v]); }; } |
|
function step(op) { |
|
if (f) throw new TypeError("Generator is already executing."); |
|
while (_) try { |
|
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; |
|
if (y = 0, t) op = [op[0] & 2, t.value]; |
|
switch (op[0]) { |
|
case 0: case 1: t = op; break; |
|
case 4: _.label++; return { value: op[1], done: false }; |
|
case 5: _.label++; y = op[1]; op = [0]; continue; |
|
case 7: op = _.ops.pop(); _.trys.pop(); continue; |
|
default: |
|
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } |
|
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } |
|
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } |
|
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } |
|
if (t[2]) _.ops.pop(); |
|
_.trys.pop(); continue; |
|
} |
|
op = body.call(thisArg, _); |
|
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } |
|
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; |
|
} |
|
}; |
|
var __read = (this && this.__read) || function (o, n) { |
|
var m = typeof Symbol === "function" && o[Symbol.iterator]; |
|
if (!m) return o; |
|
var i = m.call(o), r, ar = [], e; |
|
try { |
|
while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); |
|
} |
|
catch (error) { e = { error: error }; } |
|
finally { |
|
try { |
|
if (r && !r.done && (m = i["return"])) m.call(i); |
|
} |
|
finally { if (e) throw e.error; } |
|
} |
|
return ar; |
|
}; |
|
var __spread = (this && this.__spread) || function () { |
|
for (var ar = [], i = 0; i < arguments.length; i++) ar = ar.concat(__read(arguments[i])); |
|
return ar; |
|
}; |
|
var __importStar = (this && this.__importStar) || function (mod) { |
|
if (mod && mod.__esModule) return mod; |
|
var result = {}; |
|
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; |
|
result["default"] = mod; |
|
return result; |
|
}; |
|
var __importDefault = (this && this.__importDefault) || function (mod) { |
|
return (mod && mod.__esModule) ? mod : { "default": mod }; |
|
}; |
|
Object.defineProperty(exports, "__esModule", { value: true }); |
|
var heap = __importStar(__webpack_require__(2)); |
|
var matrix = __importStar(__webpack_require__(3)); |
|
var nnDescent = __importStar(__webpack_require__(7)); |
|
var tree = __importStar(__webpack_require__(4)); |
|
var utils = __importStar(__webpack_require__(1)); |
|
var ml_levenberg_marquardt_1 = __importDefault(__webpack_require__(8)); |
|
var SMOOTH_K_TOLERANCE = 1e-5; |
|
var MIN_K_DIST_SCALE = 1e-3; |
|
var UMAP = (function () { |
|
function UMAP(params) { |
|
if (params === void 0) { params = {}; } |
|
var _this = this; |
|
this.learningRate = 1.0; |
|
this.localConnectivity = 1.0; |
|
this.minDist = 0.1; |
|
this.nComponents = 2; |
|
this.nEpochs = 0; |
|
this.nNeighbors = 15; |
|
this.negativeSampleRate = 5; |
|
this.random = Math.random; |
|
this.repulsionStrength = 1.0; |
|
this.setOpMixRatio = 1.0; |
|
this.spread = 1.0; |
|
this.transformQueueSize = 4.0; |
|
this.targetMetric = "categorical"; |
|
this.targetWeight = 0.5; |
|
this.targetNNeighbors = this.nNeighbors; |
|
this.distanceFn = euclidean; |
|
this.isInitialized = false; |
|
this.rpForest = []; |
|
this.embedding = []; |
|
this.optimizationState = new OptimizationState(); |
|
var setParam = function (key) { |
|
if (params[key] !== undefined) |
|
_this[key] = params[key]; |
|
}; |
|
setParam('distanceFn'); |
|
setParam('learningRate'); |
|
setParam('localConnectivity'); |
|
setParam('minDist'); |
|
setParam('nComponents'); |
|
setParam('nEpochs'); |
|
setParam('nNeighbors'); |
|
setParam('negativeSampleRate'); |
|
setParam('random'); |
|
setParam('repulsionStrength'); |
|
setParam('setOpMixRatio'); |
|
setParam('spread'); |
|
setParam('transformQueueSize'); |
|
} |
|
UMAP.prototype.fit = function (X) { |
|
this.initializeFit(X); |
|
this.optimizeLayout(); |
|
return this.embedding; |
|
}; |
|
UMAP.prototype.fitAsync = function (X, callback) { |
|
if (callback === void 0) { callback = function () { return true; }; } |
|
return __awaiter(this, void 0, void 0, function () { |
|
return __generator(this, function (_a) { |
|
switch (_a.label) { |
|
case 0: |
|
this.initializeFit(X); |
|
return [4, this.optimizeLayoutAsync(callback)]; |
|
case 1: |
|
_a.sent(); |
|
return [2, this.embedding]; |
|
} |
|
}); |
|
}); |
|
}; |
|
UMAP.prototype.setSupervisedProjection = function (Y, params) { |
|
if (params === void 0) { params = {}; } |
|
this.Y = Y; |
|
this.targetMetric = params.targetMetric || this.targetMetric; |
|
this.targetWeight = params.targetWeight || this.targetWeight; |
|
this.targetNNeighbors = params.targetNNeighbors || this.targetNNeighbors; |
|
}; |
|
UMAP.prototype.setPrecomputedKNN = function (knnIndices, knnDistances) { |
|
this.knnIndices = knnIndices; |
|
this.knnDistances = knnDistances; |
|
}; |
|
UMAP.prototype.initializeFit = function (X) { |
|
if (this.X === X && this.isInitialized) { |
|
return this.getNEpochs(); |
|
} |
|
this.X = X; |
|
if (!this.knnIndices && !this.knnDistances) { |
|
var knnResults = this.nearestNeighbors(X); |
|
this.knnIndices = knnResults.knnIndices; |
|
this.knnDistances = knnResults.knnDistances; |
|
} |
|
this.graph = this.fuzzySimplicialSet(X, this.nNeighbors, this.setOpMixRatio); |
|
this.makeSearchFns(); |
|
this.searchGraph = this.makeSearchGraph(X); |
|
this.processGraphForSupervisedProjection(); |
|
var _a = this.initializeSimplicialSetEmbedding(), head = _a.head, tail = _a.tail, epochsPerSample = _a.epochsPerSample; |
|
this.optimizationState.head = head; |
|
this.optimizationState.tail = tail; |
|
this.optimizationState.epochsPerSample = epochsPerSample; |
|
this.initializeOptimization(); |
|
this.prepareForOptimizationLoop(); |
|
this.isInitialized = true; |
|
return this.getNEpochs(); |
|
}; |
|
UMAP.prototype.makeSearchFns = function () { |
|
var _a = nnDescent.makeInitializations(this.distanceFn), initFromTree = _a.initFromTree, initFromRandom = _a.initFromRandom; |
|
this.initFromTree = initFromTree; |
|
this.initFromRandom = initFromRandom; |
|
this.search = nnDescent.makeInitializedNNSearch(this.distanceFn); |
|
}; |
|
UMAP.prototype.makeSearchGraph = function (X) { |
|
var knnIndices = this.knnIndices; |
|
var knnDistances = this.knnDistances; |
|
var dims = [X.length, X.length]; |
|
var searchGraph = new matrix.SparseMatrix([], [], [], dims); |
|
for (var i = 0; i < knnIndices.length; i++) { |
|
var knn = knnIndices[i]; |
|
var distances = knnDistances[i]; |
|
for (var j = 0; j < knn.length; j++) { |
|
var neighbor = knn[j]; |
|
var distance = distances[j]; |
|
if (distance > 0) { |
|
searchGraph.set(i, neighbor, distance); |
|
} |
|
} |
|
} |
|
var transpose = matrix.transpose(searchGraph); |
|
return matrix.maximum(searchGraph, transpose); |
|
}; |
|
UMAP.prototype.transform = function (toTransform) { |
|
var _this = this; |
|
var rawData = this.X; |
|
if (rawData === undefined || rawData.length === 0) { |
|
throw new Error('No data has been fit.'); |
|
} |
|
var nNeighbors = Math.floor(this.nNeighbors * this.transformQueueSize); |
|
var init = nnDescent.initializeSearch(this.rpForest, rawData, toTransform, nNeighbors, this.initFromRandom, this.initFromTree, this.random); |
|
var result = this.search(rawData, this.searchGraph, init, toTransform); |
|
var _a = heap.deheapSort(result), indices = _a.indices, distances = _a.weights; |
|
indices = indices.map(function (x) { return x.slice(0, _this.nNeighbors); }); |
|
distances = distances.map(function (x) { return x.slice(0, _this.nNeighbors); }); |
|
var adjustedLocalConnectivity = Math.max(0, this.localConnectivity - 1); |
|
var _b = this.smoothKNNDistance(distances, this.nNeighbors, adjustedLocalConnectivity), sigmas = _b.sigmas, rhos = _b.rhos; |
|
var _c = this.computeMembershipStrengths(indices, distances, sigmas, rhos), rows = _c.rows, cols = _c.cols, vals = _c.vals; |
|
var size = [toTransform.length, rawData.length]; |
|
var graph = new matrix.SparseMatrix(rows, cols, vals, size); |
|
var normed = matrix.normalize(graph, "l1"); |
|
var csrMatrix = matrix.getCSR(normed); |
|
var nPoints = toTransform.length; |
|
var eIndices = utils.reshape2d(csrMatrix.indices, nPoints, this.nNeighbors); |
|
var eWeights = utils.reshape2d(csrMatrix.values, nPoints, this.nNeighbors); |
|
var embedding = initTransform(eIndices, eWeights, this.embedding); |
|
var nEpochs = this.nEpochs |
|
? this.nEpochs / 3 |
|
: graph.nRows <= 10000 |
|
? 100 |
|
: 30; |
|
var graphMax = graph |
|
.getValues() |
|
.reduce(function (max, val) { return (val > max ? val : max); }, 0); |
|
graph = graph.map(function (value) { return (value < graphMax / nEpochs ? 0 : value); }); |
|
graph = matrix.eliminateZeros(graph); |
|
var epochsPerSample = this.makeEpochsPerSample(graph.getValues(), nEpochs); |
|
var head = graph.getRows(); |
|
var tail = graph.getCols(); |
|
this.assignOptimizationStateParameters({ |
|
headEmbedding: embedding, |
|
tailEmbedding: this.embedding, |
|
head: head, |
|
tail: tail, |
|
currentEpoch: 0, |
|
nEpochs: nEpochs, |
|
nVertices: graph.getDims()[1], |
|
epochsPerSample: epochsPerSample, |
|
}); |
|
this.prepareForOptimizationLoop(); |
|
return this.optimizeLayout(); |
|
}; |
|
UMAP.prototype.processGraphForSupervisedProjection = function () { |
|
var _a = this, Y = _a.Y, X = _a.X; |
|
if (Y) { |
|
if (Y.length !== X.length) { |
|
throw new Error('Length of X and y must be equal'); |
|
} |
|
if (this.targetMetric === "categorical") { |
|
var lt = this.targetWeight < 1.0; |
|
var farDist = lt ? 2.5 * (1.0 / (1.0 - this.targetWeight)) : 1.0e12; |
|
this.graph = this.categoricalSimplicialSetIntersection(this.graph, Y, farDist); |
|
} |
|
} |
|
}; |
|
UMAP.prototype.step = function () { |
|
var currentEpoch = this.optimizationState.currentEpoch; |
|
if (currentEpoch < this.getNEpochs()) { |
|
this.optimizeLayoutStep(currentEpoch); |
|
} |
|
return this.optimizationState.currentEpoch; |
|
}; |
|
UMAP.prototype.getEmbedding = function () { |
|
return this.embedding; |
|
}; |
|
UMAP.prototype.nearestNeighbors = function (X) { |
|
var _a = this, distanceFn = _a.distanceFn, nNeighbors = _a.nNeighbors; |
|
var log2 = function (n) { return Math.log(n) / Math.log(2); }; |
|
var metricNNDescent = nnDescent.makeNNDescent(distanceFn, this.random); |
|
var round = function (n) { |
|
return n === 0.5 ? 0 : Math.round(n); |
|
}; |
|
var nTrees = 5 + Math.floor(round(Math.pow(X.length, 0.5) / 20.0)); |
|
var nIters = Math.max(5, Math.floor(Math.round(log2(X.length)))); |
|
this.rpForest = tree.makeForest(X, nNeighbors, nTrees, this.random); |
|
var leafArray = tree.makeLeafArray(this.rpForest); |
|
var _b = metricNNDescent(X, leafArray, nNeighbors, nIters), indices = _b.indices, weights = _b.weights; |
|
return { knnIndices: indices, knnDistances: weights }; |
|
}; |
|
UMAP.prototype.fuzzySimplicialSet = function (X, nNeighbors, setOpMixRatio) { |
|
if (setOpMixRatio === void 0) { setOpMixRatio = 1.0; } |
|
var _a = this, _b = _a.knnIndices, knnIndices = _b === void 0 ? [] : _b, _c = _a.knnDistances, knnDistances = _c === void 0 ? [] : _c, localConnectivity = _a.localConnectivity; |
|
var _d = this.smoothKNNDistance(knnDistances, nNeighbors, localConnectivity), sigmas = _d.sigmas, rhos = _d.rhos; |
|
var _e = this.computeMembershipStrengths(knnIndices, knnDistances, sigmas, rhos), rows = _e.rows, cols = _e.cols, vals = _e.vals; |
|
var size = [X.length, X.length]; |
|
var sparseMatrix = new matrix.SparseMatrix(rows, cols, vals, size); |
|
var transpose = matrix.transpose(sparseMatrix); |
|
var prodMatrix = matrix.pairwiseMultiply(sparseMatrix, transpose); |
|
var a = matrix.subtract(matrix.add(sparseMatrix, transpose), prodMatrix); |
|
var b = matrix.multiplyScalar(a, setOpMixRatio); |
|
var c = matrix.multiplyScalar(prodMatrix, 1.0 - setOpMixRatio); |
|
var result = matrix.add(b, c); |
|
return result; |
|
}; |
|
UMAP.prototype.categoricalSimplicialSetIntersection = function (simplicialSet, target, farDist, unknownDist) { |
|
if (unknownDist === void 0) { unknownDist = 1.0; } |
|
var intersection = fastIntersection(simplicialSet, target, unknownDist, farDist); |
|
intersection = matrix.eliminateZeros(intersection); |
|
return resetLocalConnectivity(intersection); |
|
}; |
|
UMAP.prototype.smoothKNNDistance = function (distances, k, localConnectivity, nIter, bandwidth) { |
|
if (localConnectivity === void 0) { localConnectivity = 1.0; } |
|
if (nIter === void 0) { nIter = 64; } |
|
if (bandwidth === void 0) { bandwidth = 1.0; } |
|
var target = (Math.log(k) / Math.log(2)) * bandwidth; |
|
var rho = utils.zeros(distances.length); |
|
var result = utils.zeros(distances.length); |
|
for (var i = 0; i < distances.length; i++) { |
|
var lo = 0.0; |
|
var hi = Infinity; |
|
var mid = 1.0; |
|
var ithDistances = distances[i]; |
|
var nonZeroDists = ithDistances.filter(function (d) { return d > 0.0; }); |
|
if (nonZeroDists.length >= localConnectivity) { |
|
var index = Math.floor(localConnectivity); |
|
var interpolation = localConnectivity - index; |
|
if (index > 0) { |
|
rho[i] = nonZeroDists[index - 1]; |
|
if (interpolation > SMOOTH_K_TOLERANCE) { |
|
rho[i] += |
|
interpolation * (nonZeroDists[index] - nonZeroDists[index - 1]); |
|
} |
|
} |
|
else { |
|
rho[i] = interpolation * nonZeroDists[0]; |
|
} |
|
} |
|
else if (nonZeroDists.length > 0) { |
|
rho[i] = utils.max(nonZeroDists); |
|
} |
|
for (var n = 0; n < nIter; n++) { |
|
var psum = 0.0; |
|
for (var j = 1; j < distances[i].length; j++) { |
|
var d = distances[i][j] - rho[i]; |
|
if (d > 0) { |
|
psum += Math.exp(-(d / mid)); |
|
} |
|
else { |
|
psum += 1.0; |
|
} |
|
} |
|
if (Math.abs(psum - target) < SMOOTH_K_TOLERANCE) { |
|
break; |
|
} |
|
if (psum > target) { |
|
hi = mid; |
|
mid = (lo + hi) / 2.0; |
|
} |
|
else { |
|
lo = mid; |
|
if (hi === Infinity) { |
|
mid *= 2; |
|
} |
|
else { |
|
mid = (lo + hi) / 2.0; |
|
} |
|
} |
|
} |
|
result[i] = mid; |
|
if (rho[i] > 0.0) { |
|
var meanIthDistances = utils.mean(ithDistances); |
|
if (result[i] < MIN_K_DIST_SCALE * meanIthDistances) { |
|
result[i] = MIN_K_DIST_SCALE * meanIthDistances; |
|
} |
|
} |
|
else { |
|
var meanDistances = utils.mean(distances.map(utils.mean)); |
|
if (result[i] < MIN_K_DIST_SCALE * meanDistances) { |
|
result[i] = MIN_K_DIST_SCALE * meanDistances; |
|
} |
|
} |
|
} |
|
return { sigmas: result, rhos: rho }; |
|
}; |
|
UMAP.prototype.computeMembershipStrengths = function (knnIndices, knnDistances, sigmas, rhos) { |
|
var nSamples = knnIndices.length; |
|
var nNeighbors = knnIndices[0].length; |
|
var rows = utils.zeros(nSamples * nNeighbors); |
|
var cols = utils.zeros(nSamples * nNeighbors); |
|
var vals = utils.zeros(nSamples * nNeighbors); |
|
for (var i = 0; i < nSamples; i++) { |
|
for (var j = 0; j < nNeighbors; j++) { |
|
var val = 0; |
|
if (knnIndices[i][j] === -1) { |
|
continue; |
|
} |
|
if (knnIndices[i][j] === i) { |
|
val = 0.0; |
|
} |
|
else if (knnDistances[i][j] - rhos[i] <= 0.0) { |
|
val = 1.0; |
|
} |
|
else { |
|
val = Math.exp(-((knnDistances[i][j] - rhos[i]) / sigmas[i])); |
|
} |
|
rows[i * nNeighbors + j] = i; |
|
cols[i * nNeighbors + j] = knnIndices[i][j]; |
|
vals[i * nNeighbors + j] = val; |
|
} |
|
} |
|
return { rows: rows, cols: cols, vals: vals }; |
|
}; |
|
UMAP.prototype.initializeSimplicialSetEmbedding = function () { |
|
var _this = this; |
|
var nEpochs = this.getNEpochs(); |
|
var nComponents = this.nComponents; |
|
var graphValues = this.graph.getValues(); |
|
var graphMax = 0; |
|
for (var i = 0; i < graphValues.length; i++) { |
|
var value = graphValues[i]; |
|
if (graphMax < graphValues[i]) { |
|
graphMax = value; |
|
} |
|
} |
|
var graph = this.graph.map(function (value) { |
|
if (value < graphMax / nEpochs) { |
|
return 0; |
|
} |
|
else { |
|
return value; |
|
} |
|
}); |
|
this.embedding = utils.zeros(graph.nRows).map(function () { |
|
return utils.zeros(nComponents).map(function () { |
|
return utils.tauRand(_this.random) * 20 + -10; |
|
}); |
|
}); |
|
var weights = []; |
|
var head = []; |
|
var tail = []; |
|
for (var i = 0; i < graph.nRows; i++) { |
|
for (var j = 0; j < graph.nCols; j++) { |
|
var value = graph.get(i, j); |
|
if (value) { |
|
weights.push(value); |
|
tail.push(i); |
|
head.push(j); |
|
} |
|
} |
|
} |
|
var epochsPerSample = this.makeEpochsPerSample(weights, nEpochs); |
|
return { head: head, tail: tail, epochsPerSample: epochsPerSample }; |
|
}; |
|
UMAP.prototype.makeEpochsPerSample = function (weights, nEpochs) { |
|
var result = utils.filled(weights.length, -1.0); |
|
var max = utils.max(weights); |
|
var nSamples = weights.map(function (w) { return (w / max) * nEpochs; }); |
|
nSamples.forEach(function (n, i) { |
|
if (n > 0) |
|
result[i] = nEpochs / nSamples[i]; |
|
}); |
|
return result; |
|
}; |
|
UMAP.prototype.assignOptimizationStateParameters = function (state) { |
|
Object.assign(this.optimizationState, state); |
|
}; |
|
UMAP.prototype.prepareForOptimizationLoop = function () { |
|
var _a = this, repulsionStrength = _a.repulsionStrength, learningRate = _a.learningRate, negativeSampleRate = _a.negativeSampleRate; |
|
var _b = this.optimizationState, epochsPerSample = _b.epochsPerSample, headEmbedding = _b.headEmbedding, tailEmbedding = _b.tailEmbedding; |
|
var dim = headEmbedding[0].length; |
|
var moveOther = headEmbedding.length === tailEmbedding.length; |
|
var epochsPerNegativeSample = epochsPerSample.map(function (e) { return e / negativeSampleRate; }); |
|
var epochOfNextNegativeSample = __spread(epochsPerNegativeSample); |
|
var epochOfNextSample = __spread(epochsPerSample); |
|
this.assignOptimizationStateParameters({ |
|
epochOfNextSample: epochOfNextSample, |
|
epochOfNextNegativeSample: epochOfNextNegativeSample, |
|
epochsPerNegativeSample: epochsPerNegativeSample, |
|
moveOther: moveOther, |
|
initialAlpha: learningRate, |
|
alpha: learningRate, |
|
gamma: repulsionStrength, |
|
dim: dim, |
|
}); |
|
}; |
|
UMAP.prototype.initializeOptimization = function () { |
|
var headEmbedding = this.embedding; |
|
var tailEmbedding = this.embedding; |
|
var _a = this.optimizationState, head = _a.head, tail = _a.tail, epochsPerSample = _a.epochsPerSample; |
|
var nEpochs = this.getNEpochs(); |
|
var nVertices = this.graph.nCols; |
|
var _b = findABParams(this.spread, this.minDist), a = _b.a, b = _b.b; |
|
this.assignOptimizationStateParameters({ |
|
headEmbedding: headEmbedding, |
|
tailEmbedding: tailEmbedding, |
|
head: head, |
|
tail: tail, |
|
epochsPerSample: epochsPerSample, |
|
a: a, |
|
b: b, |
|
nEpochs: nEpochs, |
|
nVertices: nVertices, |
|
}); |
|
}; |
|
UMAP.prototype.optimizeLayoutStep = function (n) { |
|
var optimizationState = this.optimizationState; |
|
var head = optimizationState.head, tail = optimizationState.tail, headEmbedding = optimizationState.headEmbedding, tailEmbedding = optimizationState.tailEmbedding, epochsPerSample = optimizationState.epochsPerSample, epochOfNextSample = optimizationState.epochOfNextSample, epochOfNextNegativeSample = optimizationState.epochOfNextNegativeSample, epochsPerNegativeSample = optimizationState.epochsPerNegativeSample, moveOther = optimizationState.moveOther, initialAlpha = optimizationState.initialAlpha, alpha = optimizationState.alpha, gamma = optimizationState.gamma, a = optimizationState.a, b = optimizationState.b, dim = optimizationState.dim, nEpochs = optimizationState.nEpochs, nVertices = optimizationState.nVertices; |
|
var clipValue = 4.0; |
|
for (var i = 0; i < epochsPerSample.length; i++) { |
|
if (epochOfNextSample[i] > n) { |
|
continue; |
|
} |
|
var j = head[i]; |
|
var k = tail[i]; |
|
var current = headEmbedding[j]; |
|
var other = tailEmbedding[k]; |
|
var distSquared = rDist(current, other); |
|
var gradCoeff = 0; |
|
if (distSquared > 0) { |
|
gradCoeff = -2.0 * a * b * Math.pow(distSquared, b - 1.0); |
|
gradCoeff /= a * Math.pow(distSquared, b) + 1.0; |
|
} |
|
for (var d = 0; d < dim; d++) { |
|
var gradD = clip(gradCoeff * (current[d] - other[d]), clipValue); |
|
current[d] += gradD * alpha; |
|
if (moveOther) { |
|
other[d] += -gradD * alpha; |
|
} |
|
} |
|
epochOfNextSample[i] += epochsPerSample[i]; |
|
var nNegSamples = Math.floor((n - epochOfNextNegativeSample[i]) / epochsPerNegativeSample[i]); |
|
for (var p = 0; p < nNegSamples; p++) { |
|
var k_1 = utils.tauRandInt(nVertices, this.random); |
|
var other_1 = tailEmbedding[k_1]; |
|
var distSquared_1 = rDist(current, other_1); |
|
var gradCoeff_1 = 0.0; |
|
if (distSquared_1 > 0.0) { |
|
gradCoeff_1 = 2.0 * gamma * b; |
|
gradCoeff_1 /= |
|
(0.001 + distSquared_1) * (a * Math.pow(distSquared_1, b) + 1); |
|
} |
|
else if (j === k_1) { |
|
continue; |
|
} |
|
for (var d = 0; d < dim; d++) { |
|
var gradD = 4.0; |
|
if (gradCoeff_1 > 0.0) { |
|
gradD = clip(gradCoeff_1 * (current[d] - other_1[d]), clipValue); |
|
} |
|
current[d] += gradD * alpha; |
|
} |
|
} |
|
epochOfNextNegativeSample[i] += nNegSamples * epochsPerNegativeSample[i]; |
|
} |
|
optimizationState.alpha = initialAlpha * (1.0 - n / nEpochs); |
|
optimizationState.currentEpoch += 1; |
|
return headEmbedding; |
|
}; |
|
UMAP.prototype.optimizeLayoutAsync = function (epochCallback) { |
|
var _this = this; |
|
if (epochCallback === void 0) { epochCallback = function () { return true; }; } |
|
return new Promise(function (resolve, reject) { |
|
var step = function () { return __awaiter(_this, void 0, void 0, function () { |
|
var _a, nEpochs, currentEpoch, epochCompleted, shouldStop, isFinished; |
|
return __generator(this, function (_b) { |
|
try { |
|
_a = this.optimizationState, nEpochs = _a.nEpochs, currentEpoch = _a.currentEpoch; |
|
this.embedding = this.optimizeLayoutStep(currentEpoch); |
|
epochCompleted = this.optimizationState.currentEpoch; |
|
shouldStop = epochCallback(epochCompleted) === false; |
|
isFinished = epochCompleted === nEpochs; |
|
if (!shouldStop && !isFinished) { |
|
step(); |
|
} |
|
else { |
|
return [2, resolve(isFinished)]; |
|
} |
|
} |
|
catch (err) { |
|
reject(err); |
|
} |
|
return [2]; |
|
}); |
|
}); }; |
|
step(); |
|
}); |
|
}; |
|
UMAP.prototype.optimizeLayout = function (epochCallback) { |
|
if (epochCallback === void 0) { epochCallback = function () { return true; }; } |
|
var isFinished = false; |
|
var embedding = []; |
|
while (!isFinished) { |
|
var _a = this.optimizationState, nEpochs = _a.nEpochs, currentEpoch = _a.currentEpoch; |
|
embedding = this.optimizeLayoutStep(currentEpoch); |
|
var epochCompleted = this.optimizationState.currentEpoch; |
|
var shouldStop = epochCallback(epochCompleted) === false; |
|
isFinished = epochCompleted === nEpochs || shouldStop; |
|
} |
|
return embedding; |
|
}; |
|
UMAP.prototype.getNEpochs = function () { |
|
var graph = this.graph; |
|
if (this.nEpochs > 0) { |
|
return this.nEpochs; |
|
} |
|
var length = graph.nRows; |
|
if (length <= 2500) { |
|
return 500; |
|
} |
|
else if (length <= 5000) { |
|
return 400; |
|
} |
|
else if (length <= 7500) { |
|
return 300; |
|
} |
|
else { |
|
return 200; |
|
} |
|
}; |
|
return UMAP; |
|
}()); |
|
exports.UMAP = UMAP; |
|
function euclidean(x, y) { |
|
var result = 0; |
|
for (var i = 0; i < x.length; i++) { |
|
result += Math.pow((x[i] - y[i]), 2); |
|
} |
|
return Math.sqrt(result); |
|
} |
|
exports.euclidean = euclidean; |
|
function cosine(x, y) { |
|
var result = 0.0; |
|
var normX = 0.0; |
|
var normY = 0.0; |
|
for (var i = 0; i < x.length; i++) { |
|
result += x[i] * y[i]; |
|
normX += Math.pow(x[i], 2); |
|
normY += Math.pow(y[i], 2); |
|
} |
|
if (normX === 0 && normY === 0) { |
|
return 0; |
|
} |
|
else if (normX === 0 || normY === 0) { |
|
return 1.0; |
|
} |
|
else { |
|
return 1.0 - result / Math.sqrt(normX * normY); |
|
} |
|
} |
|
exports.cosine = cosine; |
|
var OptimizationState = (function () { |
|
function OptimizationState() { |
|
this.currentEpoch = 0; |
|
this.headEmbedding = []; |
|
this.tailEmbedding = []; |
|
this.head = []; |
|
this.tail = []; |
|
this.epochsPerSample = []; |
|
this.epochOfNextSample = []; |
|
this.epochOfNextNegativeSample = []; |
|
this.epochsPerNegativeSample = []; |
|
this.moveOther = true; |
|
this.initialAlpha = 1.0; |
|
this.alpha = 1.0; |
|
this.gamma = 1.0; |
|
this.a = 1.5769434603113077; |
|
this.b = 0.8950608779109733; |
|
this.dim = 2; |
|
this.nEpochs = 500; |
|
this.nVertices = 0; |
|
} |
|
return OptimizationState; |
|
}()); |
|
function clip(x, clipValue) { |
|
if (x > clipValue) |
|
return clipValue; |
|
else if (x < -clipValue) |
|
return -clipValue; |
|
else |
|
return x; |
|
} |
|
function rDist(x, y) { |
|
var result = 0.0; |
|
for (var i = 0; i < x.length; i++) { |
|
result += Math.pow(x[i] - y[i], 2); |
|
} |
|
return result; |
|
} |
|
function findABParams(spread, minDist) { |
|
var curve = function (_a) { |
|
var _b = __read(_a, 2), a = _b[0], b = _b[1]; |
|
return function (x) { |
|
return 1.0 / (1.0 + a * Math.pow(x, (2 * b))); |
|
}; |
|
}; |
|
var xv = utils |
|
.linear(0, spread * 3, 300) |
|
.map(function (val) { return (val < minDist ? 1.0 : val); }); |
|
var yv = utils.zeros(xv.length).map(function (val, index) { |
|
var gte = xv[index] >= minDist; |
|
return gte ? Math.exp(-(xv[index] - minDist) / spread) : val; |
|
}); |
|
var initialValues = [0.5, 0.5]; |
|
var data = { x: xv, y: yv }; |
|
var options = { |
|
damping: 1.5, |
|
initialValues: initialValues, |
|
gradientDifference: 10e-2, |
|
maxIterations: 100, |
|
errorTolerance: 10e-3, |
|
}; |
|
var parameterValues = ml_levenberg_marquardt_1.default(data, curve, options).parameterValues; |
|
var _a = __read(parameterValues, 2), a = _a[0], b = _a[1]; |
|
return { a: a, b: b }; |
|
} |
|
exports.findABParams = findABParams; |
|
function fastIntersection(graph, target, unknownDist, farDist) { |
|
if (unknownDist === void 0) { unknownDist = 1.0; } |
|
if (farDist === void 0) { farDist = 5.0; } |
|
return graph.map(function (value, row, col) { |
|
if (target[row] === -1 || target[col] === -1) { |
|
return value * Math.exp(-unknownDist); |
|
} |
|
else if (target[row] !== target[col]) { |
|
return value * Math.exp(-farDist); |
|
} |
|
else { |
|
return value; |
|
} |
|
}); |
|
} |
|
exports.fastIntersection = fastIntersection; |
|
function resetLocalConnectivity(simplicialSet) { |
|
simplicialSet = matrix.normalize(simplicialSet, "max"); |
|
var transpose = matrix.transpose(simplicialSet); |
|
var prodMatrix = matrix.pairwiseMultiply(transpose, simplicialSet); |
|
simplicialSet = matrix.add(simplicialSet, matrix.subtract(transpose, prodMatrix)); |
|
return matrix.eliminateZeros(simplicialSet); |
|
} |
|
exports.resetLocalConnectivity = resetLocalConnectivity; |
|
function initTransform(indices, weights, embedding) { |
|
var result = utils |
|
.zeros(indices.length) |
|
.map(function (z) { return utils.zeros(embedding[0].length); }); |
|
for (var i = 0; i < indices.length; i++) { |
|
for (var j = 0; j < indices[0].length; j++) { |
|
for (var d = 0; d < embedding[0].length; d++) { |
|
var a = indices[i][j]; |
|
result[i][d] += weights[i][j] * embedding[a][d]; |
|
} |
|
} |
|
} |
|
return result; |
|
} |
|
exports.initTransform = initTransform; |
|
|
|
|
|
}), |
|
|
|
(function(module, exports, __webpack_require__) { |
|
|
|
"use strict"; |
|
|
|
var __values = (this && this.__values) || function (o) { |
|
var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0; |
|
if (m) return m.call(o); |
|
return { |
|
next: function () { |
|
if (o && i >= o.length) o = void 0; |
|
return { value: o && o[i++], done: !o }; |
|
} |
|
}; |
|
}; |
|
var __importStar = (this && this.__importStar) || function (mod) { |
|
if (mod && mod.__esModule) return mod; |
|
var result = {}; |
|
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; |
|
result["default"] = mod; |
|
return result; |
|
}; |
|
Object.defineProperty(exports, "__esModule", { value: true }); |
|
var heap = __importStar(__webpack_require__(2)); |
|
var matrix = __importStar(__webpack_require__(3)); |
|
var tree = __importStar(__webpack_require__(4)); |
|
var utils = __importStar(__webpack_require__(1)); |
|
function makeNNDescent(distanceFn, random) { |
|
return function nNDescent(data, leafArray, nNeighbors, nIters, maxCandidates, delta, rho, rpTreeInit) { |
|
if (nIters === void 0) { nIters = 10; } |
|
if (maxCandidates === void 0) { maxCandidates = 50; } |
|
if (delta === void 0) { delta = 0.001; } |
|
if (rho === void 0) { rho = 0.5; } |
|
if (rpTreeInit === void 0) { rpTreeInit = true; } |
|
var nVertices = data.length; |
|
var currentGraph = heap.makeHeap(data.length, nNeighbors); |
|
for (var i = 0; i < data.length; i++) { |
|
var indices = heap.rejectionSample(nNeighbors, data.length, random); |
|
for (var j = 0; j < indices.length; j++) { |
|
var d = distanceFn(data[i], data[indices[j]]); |
|
heap.heapPush(currentGraph, i, d, indices[j], 1); |
|
heap.heapPush(currentGraph, indices[j], d, i, 1); |
|
} |
|
} |
|
if (rpTreeInit) { |
|
for (var n = 0; n < leafArray.length; n++) { |
|
for (var i = 0; i < leafArray[n].length; i++) { |
|
if (leafArray[n][i] < 0) { |
|
break; |
|
} |
|
for (var j = i + 1; j < leafArray[n].length; j++) { |
|
if (leafArray[n][j] < 0) { |
|
break; |
|
} |
|
var d = distanceFn(data[leafArray[n][i]], data[leafArray[n][j]]); |
|
heap.heapPush(currentGraph, leafArray[n][i], d, leafArray[n][j], 1); |
|
heap.heapPush(currentGraph, leafArray[n][j], d, leafArray[n][i], 1); |
|
} |
|
} |
|
} |
|
} |
|
for (var n = 0; n < nIters; n++) { |
|
var candidateNeighbors = heap.buildCandidates(currentGraph, nVertices, nNeighbors, maxCandidates, random); |
|
var c = 0; |
|
for (var i = 0; i < nVertices; i++) { |
|
for (var j = 0; j < maxCandidates; j++) { |
|
var p = Math.floor(candidateNeighbors[0][i][j]); |
|
if (p < 0 || utils.tauRand(random) < rho) { |
|
continue; |
|
} |
|
for (var k = 0; k < maxCandidates; k++) { |
|
var q = Math.floor(candidateNeighbors[0][i][k]); |
|
var cj = candidateNeighbors[2][i][j]; |
|
var ck = candidateNeighbors[2][i][k]; |
|
if (q < 0 || (!cj && !ck)) { |
|
continue; |
|
} |
|
var d = distanceFn(data[p], data[q]); |
|
c += heap.heapPush(currentGraph, p, d, q, 1); |
|
c += heap.heapPush(currentGraph, q, d, p, 1); |
|
} |
|
} |
|
} |
|
if (c <= delta * nNeighbors * data.length) { |
|
break; |
|
} |
|
} |
|
var sorted = heap.deheapSort(currentGraph); |
|
return sorted; |
|
}; |
|
} |
|
exports.makeNNDescent = makeNNDescent; |
|
function makeInitializations(distanceFn) { |
|
function initFromRandom(nNeighbors, data, queryPoints, _heap, random) { |
|
for (var i = 0; i < queryPoints.length; i++) { |
|
var indices = utils.rejectionSample(nNeighbors, data.length, random); |
|
for (var j = 0; j < indices.length; j++) { |
|
if (indices[j] < 0) { |
|
continue; |
|
} |
|
var d = distanceFn(data[indices[j]], queryPoints[i]); |
|
heap.heapPush(_heap, i, d, indices[j], 1); |
|
} |
|
} |
|
} |
|
function initFromTree(_tree, data, queryPoints, _heap, random) { |
|
for (var i = 0; i < queryPoints.length; i++) { |
|
var indices = tree.searchFlatTree(queryPoints[i], _tree, random); |
|
for (var j = 0; j < indices.length; j++) { |
|
if (indices[j] < 0) { |
|
return; |
|
} |
|
var d = distanceFn(data[indices[j]], queryPoints[i]); |
|
heap.heapPush(_heap, i, d, indices[j], 1); |
|
} |
|
} |
|
return; |
|
} |
|
return { initFromRandom: initFromRandom, initFromTree: initFromTree }; |
|
} |
|
exports.makeInitializations = makeInitializations; |
|
function makeInitializedNNSearch(distanceFn) { |
|
return function nnSearchFn(data, graph, initialization, queryPoints) { |
|
var e_1, _a; |
|
var _b = matrix.getCSR(graph), indices = _b.indices, indptr = _b.indptr; |
|
for (var i = 0; i < queryPoints.length; i++) { |
|
var tried = new Set(initialization[0][i]); |
|
while (true) { |
|
var vertex = heap.smallestFlagged(initialization, i); |
|
if (vertex === -1) { |
|
break; |
|
} |
|
var candidates = indices.slice(indptr[vertex], indptr[vertex + 1]); |
|
try { |
|
for (var candidates_1 = __values(candidates), candidates_1_1 = candidates_1.next(); !candidates_1_1.done; candidates_1_1 = candidates_1.next()) { |
|
var candidate = candidates_1_1.value; |
|
if (candidate === vertex || |
|
candidate === -1 || |
|
tried.has(candidate)) { |
|
continue; |
|
} |
|
var d = distanceFn(data[candidate], queryPoints[i]); |
|
heap.uncheckedHeapPush(initialization, i, d, candidate, 1); |
|
tried.add(candidate); |
|
} |
|
} |
|
catch (e_1_1) { e_1 = { error: e_1_1 }; } |
|
finally { |
|
try { |
|
if (candidates_1_1 && !candidates_1_1.done && (_a = candidates_1.return)) _a.call(candidates_1); |
|
} |
|
finally { if (e_1) throw e_1.error; } |
|
} |
|
} |
|
} |
|
return initialization; |
|
}; |
|
} |
|
exports.makeInitializedNNSearch = makeInitializedNNSearch; |
|
function initializeSearch(forest, data, queryPoints, nNeighbors, initFromRandom, initFromTree, random) { |
|
var e_2, _a; |
|
var results = heap.makeHeap(queryPoints.length, nNeighbors); |
|
initFromRandom(nNeighbors, data, queryPoints, results, random); |
|
if (forest) { |
|
try { |
|
for (var forest_1 = __values(forest), forest_1_1 = forest_1.next(); !forest_1_1.done; forest_1_1 = forest_1.next()) { |
|
var tree_1 = forest_1_1.value; |
|
initFromTree(tree_1, data, queryPoints, results, random); |
|
} |
|
} |
|
catch (e_2_1) { e_2 = { error: e_2_1 }; } |
|
finally { |
|
try { |
|
if (forest_1_1 && !forest_1_1.done && (_a = forest_1.return)) _a.call(forest_1); |
|
} |
|
finally { if (e_2) throw e_2.error; } |
|
} |
|
} |
|
return results; |
|
} |
|
exports.initializeSearch = initializeSearch; |
|
|
|
|
|
}), |
|
|
|
(function(module, exports, __webpack_require__) { |
|
|
|
"use strict"; |
|
|
|
|
|
var mlMatrix = __webpack_require__(9); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function errorCalculation( |
|
data, |
|
parameters, |
|
parameterizedFunction |
|
) { |
|
var error = 0; |
|
const func = parameterizedFunction(parameters); |
|
|
|
for (var i = 0; i < data.x.length; i++) { |
|
error += Math.abs(data.y[i] - func(data.x[i])); |
|
} |
|
|
|
return error; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function gradientFunction( |
|
data, |
|
evaluatedData, |
|
params, |
|
gradientDifference, |
|
paramFunction |
|
) { |
|
const n = params.length; |
|
const m = data.x.length; |
|
|
|
var ans = new Array(n); |
|
|
|
for (var param = 0; param < n; param++) { |
|
ans[param] = new Array(m); |
|
var auxParams = params.concat(); |
|
auxParams[param] += gradientDifference; |
|
var funcParam = paramFunction(auxParams); |
|
|
|
for (var point = 0; point < m; point++) { |
|
ans[param][point] = evaluatedData[point] - funcParam(data.x[point]); |
|
} |
|
} |
|
return new mlMatrix.Matrix(ans); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function matrixFunction(data, evaluatedData) { |
|
const m = data.x.length; |
|
|
|
var ans = new Array(m); |
|
|
|
for (var point = 0; point < m; point++) { |
|
ans[point] = data.y[point] - evaluatedData[point]; |
|
} |
|
|
|
return new mlMatrix.Matrix([ans]); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function step( |
|
data, |
|
params, |
|
damping, |
|
gradientDifference, |
|
parameterizedFunction |
|
) { |
|
var identity = mlMatrix.Matrix.eye(params.length).mul( |
|
damping * gradientDifference * gradientDifference |
|
); |
|
|
|
var l = data.x.length; |
|
var evaluatedData = new Array(l); |
|
const func = parameterizedFunction(params); |
|
for (var i = 0; i < l; i++) { |
|
evaluatedData[i] = func(data.x[i]); |
|
} |
|
var gradientFunc = gradientFunction( |
|
data, |
|
evaluatedData, |
|
params, |
|
gradientDifference, |
|
parameterizedFunction |
|
); |
|
var matrixFunc = matrixFunction(data, evaluatedData).transposeView(); |
|
var inverseMatrix = mlMatrix.inverse( |
|
identity.add(gradientFunc.mmul(gradientFunc.transposeView())) |
|
); |
|
params = new mlMatrix.Matrix([params]); |
|
params = params.sub( |
|
inverseMatrix |
|
.mmul(gradientFunc) |
|
.mmul(matrixFunc) |
|
.mul(gradientDifference) |
|
.transposeView() |
|
); |
|
|
|
return params.to1DArray(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function levenbergMarquardt( |
|
data, |
|
parameterizedFunction, |
|
options = {} |
|
) { |
|
let { |
|
maxIterations = 100, |
|
gradientDifference = 10e-2, |
|
damping = 0, |
|
errorTolerance = 10e-3, |
|
initialValues |
|
} = options; |
|
|
|
if (damping <= 0) { |
|
throw new Error('The damping option must be a positive number'); |
|
} else if (!data.x || !data.y) { |
|
throw new Error('The data parameter must have x and y elements'); |
|
} else if ( |
|
!Array.isArray(data.x) || |
|
data.x.length < 2 || |
|
!Array.isArray(data.y) || |
|
data.y.length < 2 |
|
) { |
|
throw new Error( |
|
'The data parameter elements must be an array with more than 2 points' |
|
); |
|
} else { |
|
let dataLen = data.x.length; |
|
if (dataLen !== data.y.length) { |
|
throw new Error('The data parameter elements must have the same size'); |
|
} |
|
} |
|
|
|
var parameters = |
|
initialValues || new Array(parameterizedFunction.length).fill(1); |
|
|
|
if (!Array.isArray(parameters)) { |
|
throw new Error('initialValues must be an array'); |
|
} |
|
|
|
var error = errorCalculation(data, parameters, parameterizedFunction); |
|
|
|
var converged = error <= errorTolerance; |
|
|
|
for ( |
|
var iteration = 0; |
|
iteration < maxIterations && !converged; |
|
iteration++ |
|
) { |
|
parameters = step( |
|
data, |
|
parameters, |
|
damping, |
|
gradientDifference, |
|
parameterizedFunction |
|
); |
|
error = errorCalculation(data, parameters, parameterizedFunction); |
|
converged = error <= errorTolerance; |
|
} |
|
|
|
return { |
|
parameterValues: parameters, |
|
parameterError: error, |
|
iterations: iteration |
|
}; |
|
} |
|
|
|
module.exports = levenbergMarquardt; |
|
|
|
|
|
}), |
|
|
|
(function(module, __webpack_exports__, __webpack_require__) { |
|
|
|
"use strict"; |
|
__webpack_require__.r(__webpack_exports__); |
|
|
|
|
|
var src = __webpack_require__(0); |
|
var src_default = __webpack_require__.n(src); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function lib_es6_max(input) { |
|
if (!src_default()(input)) { |
|
throw new TypeError('input must be an array'); |
|
} |
|
|
|
if (input.length === 0) { |
|
throw new TypeError('input must not be empty'); |
|
} |
|
|
|
var max = input[0]; |
|
|
|
for (var i = 1; i < input.length; i++) { |
|
if (input[i] > max) max = input[i]; |
|
} |
|
|
|
return max; |
|
} |
|
|
|
var lib_es6 = (lib_es6_max); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function lib_es6_min(input) { |
|
if (!src_default()(input)) { |
|
throw new TypeError('input must be an array'); |
|
} |
|
|
|
if (input.length === 0) { |
|
throw new TypeError('input must not be empty'); |
|
} |
|
|
|
var min = input[0]; |
|
|
|
for (var i = 1; i < input.length; i++) { |
|
if (input[i] < min) min = input[i]; |
|
} |
|
|
|
return min; |
|
} |
|
|
|
var ml_array_min_lib_es6 = (lib_es6_min); |
|
|
|
|
|
|
|
|
|
|
|
|
|
function rescale(input) { |
|
var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {}; |
|
|
|
if (!src_default()(input)) { |
|
throw new TypeError('input must be an array'); |
|
} else if (input.length === 0) { |
|
throw new TypeError('input must not be empty'); |
|
} |
|
|
|
var output; |
|
|
|
if (options.output !== undefined) { |
|
if (!src_default()(options.output)) { |
|
throw new TypeError('output option must be an array if specified'); |
|
} |
|
|
|
output = options.output; |
|
} else { |
|
output = new Array(input.length); |
|
} |
|
|
|
var currentMin = ml_array_min_lib_es6(input); |
|
var currentMax = lib_es6(input); |
|
|
|
if (currentMin === currentMax) { |
|
throw new RangeError('minimum and maximum input values are equal. Cannot rescale a constant array'); |
|
} |
|
|
|
var _options$min = options.min, |
|
minValue = _options$min === void 0 ? options.autoMinMax ? currentMin : 0 : _options$min, |
|
_options$max = options.max, |
|
maxValue = _options$max === void 0 ? options.autoMinMax ? currentMax : 1 : _options$max; |
|
|
|
if (minValue >= maxValue) { |
|
throw new RangeError('min option must be smaller than max option'); |
|
} |
|
|
|
var factor = (maxValue - minValue) / (currentMax - currentMin); |
|
|
|
for (var i = 0; i < input.length; i++) { |
|
output[i] = (input[i] - currentMin) * factor + minValue; |
|
} |
|
|
|
return output; |
|
} |
|
|
|
var ml_array_rescale_lib_es6 = (rescale); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class lu_LuDecomposition { |
|
constructor(matrix) { |
|
matrix = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(matrix); |
|
|
|
var lu = matrix.clone(); |
|
var rows = lu.rows; |
|
var columns = lu.columns; |
|
var pivotVector = new Array(rows); |
|
var pivotSign = 1; |
|
var i, j, k, p, s, t, v; |
|
var LUcolj, kmax; |
|
|
|
for (i = 0; i < rows; i++) { |
|
pivotVector[i] = i; |
|
} |
|
|
|
LUcolj = new Array(rows); |
|
|
|
for (j = 0; j < columns; j++) { |
|
for (i = 0; i < rows; i++) { |
|
LUcolj[i] = lu.get(i, j); |
|
} |
|
|
|
for (i = 0; i < rows; i++) { |
|
kmax = Math.min(i, j); |
|
s = 0; |
|
for (k = 0; k < kmax; k++) { |
|
s += lu.get(i, k) * LUcolj[k]; |
|
} |
|
LUcolj[i] -= s; |
|
lu.set(i, j, LUcolj[i]); |
|
} |
|
|
|
p = j; |
|
for (i = j + 1; i < rows; i++) { |
|
if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { |
|
p = i; |
|
} |
|
} |
|
|
|
if (p !== j) { |
|
for (k = 0; k < columns; k++) { |
|
t = lu.get(p, k); |
|
lu.set(p, k, lu.get(j, k)); |
|
lu.set(j, k, t); |
|
} |
|
|
|
v = pivotVector[p]; |
|
pivotVector[p] = pivotVector[j]; |
|
pivotVector[j] = v; |
|
|
|
pivotSign = -pivotSign; |
|
} |
|
|
|
if (j < rows && lu.get(j, j) !== 0) { |
|
for (i = j + 1; i < rows; i++) { |
|
lu.set(i, j, lu.get(i, j) / lu.get(j, j)); |
|
} |
|
} |
|
} |
|
|
|
this.LU = lu; |
|
this.pivotVector = pivotVector; |
|
this.pivotSign = pivotSign; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
isSingular() { |
|
var data = this.LU; |
|
var col = data.columns; |
|
for (var j = 0; j < col; j++) { |
|
if (data[j][j] === 0) { |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
solve(value) { |
|
value = matrix_Matrix.checkMatrix(value); |
|
|
|
var lu = this.LU; |
|
var rows = lu.rows; |
|
|
|
if (rows !== value.rows) { |
|
throw new Error('Invalid matrix dimensions'); |
|
} |
|
if (this.isSingular()) { |
|
throw new Error('LU matrix is singular'); |
|
} |
|
|
|
var count = value.columns; |
|
var X = value.subMatrixRow(this.pivotVector, 0, count - 1); |
|
var columns = lu.columns; |
|
var i, j, k; |
|
|
|
for (k = 0; k < columns; k++) { |
|
for (i = k + 1; i < columns; i++) { |
|
for (j = 0; j < count; j++) { |
|
X[i][j] -= X[k][j] * lu[i][k]; |
|
} |
|
} |
|
} |
|
for (k = columns - 1; k >= 0; k--) { |
|
for (j = 0; j < count; j++) { |
|
X[k][j] /= lu[k][k]; |
|
} |
|
for (i = 0; i < k; i++) { |
|
for (j = 0; j < count; j++) { |
|
X[i][j] -= X[k][j] * lu[i][k]; |
|
} |
|
} |
|
} |
|
return X; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get determinant() { |
|
var data = this.LU; |
|
if (!data.isSquare()) { |
|
throw new Error('Matrix must be square'); |
|
} |
|
var determinant = this.pivotSign; |
|
var col = data.columns; |
|
for (var j = 0; j < col; j++) { |
|
determinant *= data[j][j]; |
|
} |
|
return determinant; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get lowerTriangularMatrix() { |
|
var data = this.LU; |
|
var rows = data.rows; |
|
var columns = data.columns; |
|
var X = new matrix_Matrix(rows, columns); |
|
for (var i = 0; i < rows; i++) { |
|
for (var j = 0; j < columns; j++) { |
|
if (i > j) { |
|
X[i][j] = data[i][j]; |
|
} else if (i === j) { |
|
X[i][j] = 1; |
|
} else { |
|
X[i][j] = 0; |
|
} |
|
} |
|
} |
|
return X; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get upperTriangularMatrix() { |
|
var data = this.LU; |
|
var rows = data.rows; |
|
var columns = data.columns; |
|
var X = new matrix_Matrix(rows, columns); |
|
for (var i = 0; i < rows; i++) { |
|
for (var j = 0; j < columns; j++) { |
|
if (i <= j) { |
|
X[i][j] = data[i][j]; |
|
} else { |
|
X[i][j] = 0; |
|
} |
|
} |
|
} |
|
return X; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get pivotPermutationVector() { |
|
return this.pivotVector.slice(); |
|
} |
|
} |
|
|
|
|
|
function hypotenuse(a, b) { |
|
var r = 0; |
|
if (Math.abs(a) > Math.abs(b)) { |
|
r = b / a; |
|
return Math.abs(a) * Math.sqrt(1 + r * r); |
|
} |
|
if (b !== 0) { |
|
r = a / b; |
|
return Math.abs(b) * Math.sqrt(1 + r * r); |
|
} |
|
return 0; |
|
} |
|
|
|
function getFilled2DArray(rows, columns, value) { |
|
var array = new Array(rows); |
|
for (var i = 0; i < rows; i++) { |
|
array[i] = new Array(columns); |
|
for (var j = 0; j < columns; j++) { |
|
array[i][j] = value; |
|
} |
|
} |
|
return array; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class svd_SingularValueDecomposition { |
|
constructor(value, options = {}) { |
|
value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value); |
|
|
|
var m = value.rows; |
|
var n = value.columns; |
|
|
|
const { |
|
computeLeftSingularVectors = true, |
|
computeRightSingularVectors = true, |
|
autoTranspose = false |
|
} = options; |
|
|
|
var wantu = Boolean(computeLeftSingularVectors); |
|
var wantv = Boolean(computeRightSingularVectors); |
|
|
|
var swapped = false; |
|
var a; |
|
if (m < n) { |
|
if (!autoTranspose) { |
|
a = value.clone(); |
|
|
|
console.warn( |
|
'Computing SVD on a matrix with more columns than rows. Consider enabling autoTranspose' |
|
); |
|
} else { |
|
a = value.transpose(); |
|
m = a.rows; |
|
n = a.columns; |
|
swapped = true; |
|
var aux = wantu; |
|
wantu = wantv; |
|
wantv = aux; |
|
} |
|
} else { |
|
a = value.clone(); |
|
} |
|
|
|
var nu = Math.min(m, n); |
|
var ni = Math.min(m + 1, n); |
|
var s = new Array(ni); |
|
var U = getFilled2DArray(m, nu, 0); |
|
var V = getFilled2DArray(n, n, 0); |
|
|
|
var e = new Array(n); |
|
var work = new Array(m); |
|
|
|
var si = new Array(ni); |
|
for (let i = 0; i < ni; i++) si[i] = i; |
|
|
|
var nct = Math.min(m - 1, n); |
|
var nrt = Math.max(0, Math.min(n - 2, m)); |
|
var mrc = Math.max(nct, nrt); |
|
|
|
for (let k = 0; k < mrc; k++) { |
|
if (k < nct) { |
|
s[k] = 0; |
|
for (let i = k; i < m; i++) { |
|
s[k] = hypotenuse(s[k], a[i][k]); |
|
} |
|
if (s[k] !== 0) { |
|
if (a[k][k] < 0) { |
|
s[k] = -s[k]; |
|
} |
|
for (let i = k; i < m; i++) { |
|
a[i][k] /= s[k]; |
|
} |
|
a[k][k] += 1; |
|
} |
|
s[k] = -s[k]; |
|
} |
|
|
|
for (let j = k + 1; j < n; j++) { |
|
if (k < nct && s[k] !== 0) { |
|
let t = 0; |
|
for (let i = k; i < m; i++) { |
|
t += a[i][k] * a[i][j]; |
|
} |
|
t = -t / a[k][k]; |
|
for (let i = k; i < m; i++) { |
|
a[i][j] += t * a[i][k]; |
|
} |
|
} |
|
e[j] = a[k][j]; |
|
} |
|
|
|
if (wantu && k < nct) { |
|
for (let i = k; i < m; i++) { |
|
U[i][k] = a[i][k]; |
|
} |
|
} |
|
|
|
if (k < nrt) { |
|
e[k] = 0; |
|
for (let i = k + 1; i < n; i++) { |
|
e[k] = hypotenuse(e[k], e[i]); |
|
} |
|
if (e[k] !== 0) { |
|
if (e[k + 1] < 0) { |
|
e[k] = 0 - e[k]; |
|
} |
|
for (let i = k + 1; i < n; i++) { |
|
e[i] /= e[k]; |
|
} |
|
e[k + 1] += 1; |
|
} |
|
e[k] = -e[k]; |
|
if (k + 1 < m && e[k] !== 0) { |
|
for (let i = k + 1; i < m; i++) { |
|
work[i] = 0; |
|
} |
|
for (let i = k + 1; i < m; i++) { |
|
for (let j = k + 1; j < n; j++) { |
|
work[i] += e[j] * a[i][j]; |
|
} |
|
} |
|
for (let j = k + 1; j < n; j++) { |
|
let t = -e[j] / e[k + 1]; |
|
for (let i = k + 1; i < m; i++) { |
|
a[i][j] += t * work[i]; |
|
} |
|
} |
|
} |
|
if (wantv) { |
|
for (let i = k + 1; i < n; i++) { |
|
V[i][k] = e[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
let p = Math.min(n, m + 1); |
|
if (nct < n) { |
|
s[nct] = a[nct][nct]; |
|
} |
|
if (m < p) { |
|
s[p - 1] = 0; |
|
} |
|
if (nrt + 1 < p) { |
|
e[nrt] = a[nrt][p - 1]; |
|
} |
|
e[p - 1] = 0; |
|
|
|
if (wantu) { |
|
for (let j = nct; j < nu; j++) { |
|
for (let i = 0; i < m; i++) { |
|
U[i][j] = 0; |
|
} |
|
U[j][j] = 1; |
|
} |
|
for (let k = nct - 1; k >= 0; k--) { |
|
if (s[k] !== 0) { |
|
for (let j = k + 1; j < nu; j++) { |
|
let t = 0; |
|
for (let i = k; i < m; i++) { |
|
t += U[i][k] * U[i][j]; |
|
} |
|
t = -t / U[k][k]; |
|
for (let i = k; i < m; i++) { |
|
U[i][j] += t * U[i][k]; |
|
} |
|
} |
|
for (let i = k; i < m; i++) { |
|
U[i][k] = -U[i][k]; |
|
} |
|
U[k][k] = 1 + U[k][k]; |
|
for (let i = 0; i < k - 1; i++) { |
|
U[i][k] = 0; |
|
} |
|
} else { |
|
for (let i = 0; i < m; i++) { |
|
U[i][k] = 0; |
|
} |
|
U[k][k] = 1; |
|
} |
|
} |
|
} |
|
|
|
if (wantv) { |
|
for (let k = n - 1; k >= 0; k--) { |
|
if (k < nrt && e[k] !== 0) { |
|
for (let j = k + 1; j < n; j++) { |
|
let t = 0; |
|
for (let i = k + 1; i < n; i++) { |
|
t += V[i][k] * V[i][j]; |
|
} |
|
t = -t / V[k + 1][k]; |
|
for (let i = k + 1; i < n; i++) { |
|
V[i][j] += t * V[i][k]; |
|
} |
|
} |
|
} |
|
for (let i = 0; i < n; i++) { |
|
V[i][k] = 0; |
|
} |
|
V[k][k] = 1; |
|
} |
|
} |
|
|
|
var pp = p - 1; |
|
var iter = 0; |
|
var eps = Number.EPSILON; |
|
while (p > 0) { |
|
let k, kase; |
|
for (k = p - 2; k >= -1; k--) { |
|
if (k === -1) { |
|
break; |
|
} |
|
const alpha = |
|
Number.MIN_VALUE + eps * Math.abs(s[k] + Math.abs(s[k + 1])); |
|
if (Math.abs(e[k]) <= alpha || Number.isNaN(e[k])) { |
|
e[k] = 0; |
|
break; |
|
} |
|
} |
|
if (k === p - 2) { |
|
kase = 4; |
|
} else { |
|
let ks; |
|
for (ks = p - 1; ks >= k; ks--) { |
|
if (ks === k) { |
|
break; |
|
} |
|
let t = |
|
(ks !== p ? Math.abs(e[ks]) : 0) + |
|
(ks !== k + 1 ? Math.abs(e[ks - 1]) : 0); |
|
if (Math.abs(s[ks]) <= eps * t) { |
|
s[ks] = 0; |
|
break; |
|
} |
|
} |
|
if (ks === k) { |
|
kase = 3; |
|
} else if (ks === p - 1) { |
|
kase = 1; |
|
} else { |
|
kase = 2; |
|
k = ks; |
|
} |
|
} |
|
|
|
k++; |
|
|
|
switch (kase) { |
|
case 1: { |
|
let f = e[p - 2]; |
|
e[p - 2] = 0; |
|
for (let j = p - 2; j >= k; j--) { |
|
let t = hypotenuse(s[j], f); |
|
let cs = s[j] / t; |
|
let sn = f / t; |
|
s[j] = t; |
|
if (j !== k) { |
|
f = -sn * e[j - 1]; |
|
e[j - 1] = cs * e[j - 1]; |
|
} |
|
if (wantv) { |
|
for (let i = 0; i < n; i++) { |
|
t = cs * V[i][j] + sn * V[i][p - 1]; |
|
V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1]; |
|
V[i][j] = t; |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
case 2: { |
|
let f = e[k - 1]; |
|
e[k - 1] = 0; |
|
for (let j = k; j < p; j++) { |
|
let t = hypotenuse(s[j], f); |
|
let cs = s[j] / t; |
|
let sn = f / t; |
|
s[j] = t; |
|
f = -sn * e[j]; |
|
e[j] = cs * e[j]; |
|
if (wantu) { |
|
for (let i = 0; i < m; i++) { |
|
t = cs * U[i][j] + sn * U[i][k - 1]; |
|
U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1]; |
|
U[i][j] = t; |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
case 3: { |
|
const scale = Math.max( |
|
Math.abs(s[p - 1]), |
|
Math.abs(s[p - 2]), |
|
Math.abs(e[p - 2]), |
|
Math.abs(s[k]), |
|
Math.abs(e[k]) |
|
); |
|
const sp = s[p - 1] / scale; |
|
const spm1 = s[p - 2] / scale; |
|
const epm1 = e[p - 2] / scale; |
|
const sk = s[k] / scale; |
|
const ek = e[k] / scale; |
|
const b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2; |
|
const c = sp * epm1 * (sp * epm1); |
|
let shift = 0; |
|
if (b !== 0 || c !== 0) { |
|
if (b < 0) { |
|
shift = 0 - Math.sqrt(b * b + c); |
|
} else { |
|
shift = Math.sqrt(b * b + c); |
|
} |
|
shift = c / (b + shift); |
|
} |
|
let f = (sk + sp) * (sk - sp) + shift; |
|
let g = sk * ek; |
|
for (let j = k; j < p - 1; j++) { |
|
let t = hypotenuse(f, g); |
|
if (t === 0) t = Number.MIN_VALUE; |
|
let cs = f / t; |
|
let sn = g / t; |
|
if (j !== k) { |
|
e[j - 1] = t; |
|
} |
|
f = cs * s[j] + sn * e[j]; |
|
e[j] = cs * e[j] - sn * s[j]; |
|
g = sn * s[j + 1]; |
|
s[j + 1] = cs * s[j + 1]; |
|
if (wantv) { |
|
for (let i = 0; i < n; i++) { |
|
t = cs * V[i][j] + sn * V[i][j + 1]; |
|
V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1]; |
|
V[i][j] = t; |
|
} |
|
} |
|
t = hypotenuse(f, g); |
|
if (t === 0) t = Number.MIN_VALUE; |
|
cs = f / t; |
|
sn = g / t; |
|
s[j] = t; |
|
f = cs * e[j] + sn * s[j + 1]; |
|
s[j + 1] = -sn * e[j] + cs * s[j + 1]; |
|
g = sn * e[j + 1]; |
|
e[j + 1] = cs * e[j + 1]; |
|
if (wantu && j < m - 1) { |
|
for (let i = 0; i < m; i++) { |
|
t = cs * U[i][j] + sn * U[i][j + 1]; |
|
U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1]; |
|
U[i][j] = t; |
|
} |
|
} |
|
} |
|
e[p - 2] = f; |
|
iter = iter + 1; |
|
break; |
|
} |
|
case 4: { |
|
if (s[k] <= 0) { |
|
s[k] = s[k] < 0 ? -s[k] : 0; |
|
if (wantv) { |
|
for (let i = 0; i <= pp; i++) { |
|
V[i][k] = -V[i][k]; |
|
} |
|
} |
|
} |
|
while (k < pp) { |
|
if (s[k] >= s[k + 1]) { |
|
break; |
|
} |
|
let t = s[k]; |
|
s[k] = s[k + 1]; |
|
s[k + 1] = t; |
|
if (wantv && k < n - 1) { |
|
for (let i = 0; i < n; i++) { |
|
t = V[i][k + 1]; |
|
V[i][k + 1] = V[i][k]; |
|
V[i][k] = t; |
|
} |
|
} |
|
if (wantu && k < m - 1) { |
|
for (let i = 0; i < m; i++) { |
|
t = U[i][k + 1]; |
|
U[i][k + 1] = U[i][k]; |
|
U[i][k] = t; |
|
} |
|
} |
|
k++; |
|
} |
|
iter = 0; |
|
p--; |
|
break; |
|
} |
|
|
|
} |
|
} |
|
|
|
if (swapped) { |
|
var tmp = V; |
|
V = U; |
|
U = tmp; |
|
} |
|
|
|
this.m = m; |
|
this.n = n; |
|
this.s = s; |
|
this.U = U; |
|
this.V = V; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
solve(value) { |
|
var Y = value; |
|
var e = this.threshold; |
|
var scols = this.s.length; |
|
var Ls = matrix_Matrix.zeros(scols, scols); |
|
|
|
for (let i = 0; i < scols; i++) { |
|
if (Math.abs(this.s[i]) <= e) { |
|
Ls[i][i] = 0; |
|
} else { |
|
Ls[i][i] = 1 / this.s[i]; |
|
} |
|
} |
|
|
|
var U = this.U; |
|
var V = this.rightSingularVectors; |
|
|
|
var VL = V.mmul(Ls); |
|
var vrows = V.rows; |
|
var urows = U.length; |
|
var VLU = matrix_Matrix.zeros(vrows, urows); |
|
|
|
for (let i = 0; i < vrows; i++) { |
|
for (let j = 0; j < urows; j++) { |
|
let sum = 0; |
|
for (let k = 0; k < scols; k++) { |
|
sum += VL[i][k] * U[j][k]; |
|
} |
|
VLU[i][j] = sum; |
|
} |
|
} |
|
|
|
return VLU.mmul(Y); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
solveForDiagonal(value) { |
|
return this.solve(matrix_Matrix.diag(value)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse() { |
|
var V = this.V; |
|
var e = this.threshold; |
|
var vrows = V.length; |
|
var vcols = V[0].length; |
|
var X = new matrix_Matrix(vrows, this.s.length); |
|
|
|
for (let i = 0; i < vrows; i++) { |
|
for (let j = 0; j < vcols; j++) { |
|
if (Math.abs(this.s[j]) > e) { |
|
X[i][j] = V[i][j] / this.s[j]; |
|
} else { |
|
X[i][j] = 0; |
|
} |
|
} |
|
} |
|
|
|
var U = this.U; |
|
|
|
var urows = U.length; |
|
var ucols = U[0].length; |
|
var Y = new matrix_Matrix(vrows, urows); |
|
|
|
for (let i = 0; i < vrows; i++) { |
|
for (let j = 0; j < urows; j++) { |
|
let sum = 0; |
|
for (let k = 0; k < ucols; k++) { |
|
sum += X[i][k] * U[j][k]; |
|
} |
|
Y[i][j] = sum; |
|
} |
|
} |
|
|
|
return Y; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get condition() { |
|
return this.s[0] / this.s[Math.min(this.m, this.n) - 1]; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get norm2() { |
|
return this.s[0]; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get rank() { |
|
var tol = Math.max(this.m, this.n) * this.s[0] * Number.EPSILON; |
|
var r = 0; |
|
var s = this.s; |
|
for (var i = 0, ii = s.length; i < ii; i++) { |
|
if (s[i] > tol) { |
|
r++; |
|
} |
|
} |
|
return r; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get diagonal() { |
|
return this.s; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get threshold() { |
|
return Number.EPSILON / 2 * Math.max(this.m, this.n) * this.s[0]; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get leftSingularVectors() { |
|
if (!matrix_Matrix.isMatrix(this.U)) { |
|
this.U = new matrix_Matrix(this.U); |
|
} |
|
return this.U; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get rightSingularVectors() { |
|
if (!matrix_Matrix.isMatrix(this.V)) { |
|
this.V = new matrix_Matrix(this.V); |
|
} |
|
return this.V; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get diagonalMatrix() { |
|
return matrix_Matrix.diag(this.s); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function checkRowIndex(matrix, index, outer) { |
|
var max = outer ? matrix.rows : matrix.rows - 1; |
|
if (index < 0 || index > max) { |
|
throw new RangeError('Row index out of range'); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function checkColumnIndex(matrix, index, outer) { |
|
var max = outer ? matrix.columns : matrix.columns - 1; |
|
if (index < 0 || index > max) { |
|
throw new RangeError('Column index out of range'); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function checkRowVector(matrix, vector) { |
|
if (vector.to1DArray) { |
|
vector = vector.to1DArray(); |
|
} |
|
if (vector.length !== matrix.columns) { |
|
throw new RangeError( |
|
'vector size must be the same as the number of columns' |
|
); |
|
} |
|
return vector; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function checkColumnVector(matrix, vector) { |
|
if (vector.to1DArray) { |
|
vector = vector.to1DArray(); |
|
} |
|
if (vector.length !== matrix.rows) { |
|
throw new RangeError('vector size must be the same as the number of rows'); |
|
} |
|
return vector; |
|
} |
|
|
|
function checkIndices(matrix, rowIndices, columnIndices) { |
|
return { |
|
row: checkRowIndices(matrix, rowIndices), |
|
column: checkColumnIndices(matrix, columnIndices) |
|
}; |
|
} |
|
|
|
function checkRowIndices(matrix, rowIndices) { |
|
if (typeof rowIndices !== 'object') { |
|
throw new TypeError('unexpected type for row indices'); |
|
} |
|
|
|
var rowOut = rowIndices.some((r) => { |
|
return r < 0 || r >= matrix.rows; |
|
}); |
|
|
|
if (rowOut) { |
|
throw new RangeError('row indices are out of range'); |
|
} |
|
|
|
if (!Array.isArray(rowIndices)) rowIndices = Array.from(rowIndices); |
|
|
|
return rowIndices; |
|
} |
|
|
|
function checkColumnIndices(matrix, columnIndices) { |
|
if (typeof columnIndices !== 'object') { |
|
throw new TypeError('unexpected type for column indices'); |
|
} |
|
|
|
var columnOut = columnIndices.some((c) => { |
|
return c < 0 || c >= matrix.columns; |
|
}); |
|
|
|
if (columnOut) { |
|
throw new RangeError('column indices are out of range'); |
|
} |
|
if (!Array.isArray(columnIndices)) columnIndices = Array.from(columnIndices); |
|
|
|
return columnIndices; |
|
} |
|
|
|
function checkRange(matrix, startRow, endRow, startColumn, endColumn) { |
|
if (arguments.length !== 5) { |
|
throw new RangeError('expected 4 arguments'); |
|
} |
|
checkNumber('startRow', startRow); |
|
checkNumber('endRow', endRow); |
|
checkNumber('startColumn', startColumn); |
|
checkNumber('endColumn', endColumn); |
|
if ( |
|
startRow > endRow || |
|
startColumn > endColumn || |
|
startRow < 0 || |
|
startRow >= matrix.rows || |
|
endRow < 0 || |
|
endRow >= matrix.rows || |
|
startColumn < 0 || |
|
startColumn >= matrix.columns || |
|
endColumn < 0 || |
|
endColumn >= matrix.columns |
|
) { |
|
throw new RangeError('Submatrix indices are out of range'); |
|
} |
|
} |
|
|
|
function getRange(from, to) { |
|
var arr = new Array(to - from + 1); |
|
for (var i = 0; i < arr.length; i++) { |
|
arr[i] = from + i; |
|
} |
|
return arr; |
|
} |
|
|
|
function sumByRow(matrix) { |
|
var sum = matrix_Matrix.zeros(matrix.rows, 1); |
|
for (var i = 0; i < matrix.rows; ++i) { |
|
for (var j = 0; j < matrix.columns; ++j) { |
|
sum.set(i, 0, sum.get(i, 0) + matrix.get(i, j)); |
|
} |
|
} |
|
return sum; |
|
} |
|
|
|
function sumByColumn(matrix) { |
|
var sum = matrix_Matrix.zeros(1, matrix.columns); |
|
for (var i = 0; i < matrix.rows; ++i) { |
|
for (var j = 0; j < matrix.columns; ++j) { |
|
sum.set(0, j, sum.get(0, j) + matrix.get(i, j)); |
|
} |
|
} |
|
return sum; |
|
} |
|
|
|
function sumAll(matrix) { |
|
var v = 0; |
|
for (var i = 0; i < matrix.rows; i++) { |
|
for (var j = 0; j < matrix.columns; j++) { |
|
v += matrix.get(i, j); |
|
} |
|
} |
|
return v; |
|
} |
|
|
|
function checkNumber(name, value) { |
|
if (typeof value !== 'number') { |
|
throw new TypeError(`${name} must be a number`); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
class base_BaseView extends AbstractMatrix() { |
|
constructor(matrix, rows, columns) { |
|
super(); |
|
this.matrix = matrix; |
|
this.rows = rows; |
|
this.columns = columns; |
|
} |
|
|
|
static get [Symbol.species]() { |
|
return matrix_Matrix; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
class transpose_MatrixTransposeView extends base_BaseView { |
|
constructor(matrix) { |
|
super(matrix, matrix.columns, matrix.rows); |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.matrix.set(columnIndex, rowIndex, value); |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this.matrix.get(columnIndex, rowIndex); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
class row_MatrixRowView extends base_BaseView { |
|
constructor(matrix, row) { |
|
super(matrix, 1, matrix.columns); |
|
this.row = row; |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.matrix.set(this.row, columnIndex, value); |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this.matrix.get(this.row, columnIndex); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
class sub_MatrixSubView extends base_BaseView { |
|
constructor(matrix, startRow, endRow, startColumn, endColumn) { |
|
checkRange(matrix, startRow, endRow, startColumn, endColumn); |
|
super(matrix, endRow - startRow + 1, endColumn - startColumn + 1); |
|
this.startRow = startRow; |
|
this.startColumn = startColumn; |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.matrix.set( |
|
this.startRow + rowIndex, |
|
this.startColumn + columnIndex, |
|
value |
|
); |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this.matrix.get( |
|
this.startRow + rowIndex, |
|
this.startColumn + columnIndex |
|
); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
class selection_MatrixSelectionView extends base_BaseView { |
|
constructor(matrix, rowIndices, columnIndices) { |
|
var indices = checkIndices(matrix, rowIndices, columnIndices); |
|
super(matrix, indices.row.length, indices.column.length); |
|
this.rowIndices = indices.row; |
|
this.columnIndices = indices.column; |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.matrix.set( |
|
this.rowIndices[rowIndex], |
|
this.columnIndices[columnIndex], |
|
value |
|
); |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this.matrix.get( |
|
this.rowIndices[rowIndex], |
|
this.columnIndices[columnIndex] |
|
); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
class rowSelection_MatrixRowSelectionView extends base_BaseView { |
|
constructor(matrix, rowIndices) { |
|
rowIndices = checkRowIndices(matrix, rowIndices); |
|
super(matrix, rowIndices.length, matrix.columns); |
|
this.rowIndices = rowIndices; |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.matrix.set(this.rowIndices[rowIndex], columnIndex, value); |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this.matrix.get(this.rowIndices[rowIndex], columnIndex); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
class columnSelection_MatrixColumnSelectionView extends base_BaseView { |
|
constructor(matrix, columnIndices) { |
|
columnIndices = checkColumnIndices(matrix, columnIndices); |
|
super(matrix, matrix.rows, columnIndices.length); |
|
this.columnIndices = columnIndices; |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.matrix.set(rowIndex, this.columnIndices[columnIndex], value); |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this.matrix.get(rowIndex, this.columnIndices[columnIndex]); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
class column_MatrixColumnView extends base_BaseView { |
|
constructor(matrix, column) { |
|
super(matrix, matrix.rows, 1); |
|
this.column = column; |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.matrix.set(rowIndex, this.column, value); |
|
return this; |
|
} |
|
|
|
get(rowIndex) { |
|
return this.matrix.get(rowIndex, this.column); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
class flipRow_MatrixFlipRowView extends base_BaseView { |
|
constructor(matrix) { |
|
super(matrix, matrix.rows, matrix.columns); |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.matrix.set(this.rows - rowIndex - 1, columnIndex, value); |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this.matrix.get(this.rows - rowIndex - 1, columnIndex); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
class flipColumn_MatrixFlipColumnView extends base_BaseView { |
|
constructor(matrix) { |
|
super(matrix, matrix.rows, matrix.columns); |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.matrix.set(rowIndex, this.columns - columnIndex - 1, value); |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this.matrix.get(rowIndex, this.columns - columnIndex - 1); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function AbstractMatrix(superCtor) { |
|
if (superCtor === undefined) superCtor = Object; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Matrix extends superCtor { |
|
static get [Symbol.species]() { |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static from1DArray(newRows, newColumns, newData) { |
|
var length = newRows * newColumns; |
|
if (length !== newData.length) { |
|
throw new RangeError('Data length does not match given dimensions'); |
|
} |
|
var newMatrix = new this(newRows, newColumns); |
|
for (var row = 0; row < newRows; row++) { |
|
for (var column = 0; column < newColumns; column++) { |
|
newMatrix.set(row, column, newData[row * newColumns + column]); |
|
} |
|
} |
|
return newMatrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
static rowVector(newData) { |
|
var vector = new this(1, newData.length); |
|
for (var i = 0; i < newData.length; i++) { |
|
vector.set(0, i, newData[i]); |
|
} |
|
return vector; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
static columnVector(newData) { |
|
var vector = new this(newData.length, 1); |
|
for (var i = 0; i < newData.length; i++) { |
|
vector.set(i, 0, newData[i]); |
|
} |
|
return vector; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static empty(rows, columns) { |
|
return new this(rows, columns); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static zeros(rows, columns) { |
|
return this.empty(rows, columns).fill(0); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static ones(rows, columns) { |
|
return this.empty(rows, columns).fill(1); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static rand(rows, columns, rng) { |
|
if (rng === undefined) rng = Math.random; |
|
var matrix = this.empty(rows, columns); |
|
for (var i = 0; i < rows; i++) { |
|
for (var j = 0; j < columns; j++) { |
|
matrix.set(i, j, rng()); |
|
} |
|
} |
|
return matrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static randInt(rows, columns, maxValue, rng) { |
|
if (maxValue === undefined) maxValue = 1000; |
|
if (rng === undefined) rng = Math.random; |
|
var matrix = this.empty(rows, columns); |
|
for (var i = 0; i < rows; i++) { |
|
for (var j = 0; j < columns; j++) { |
|
var value = Math.floor(rng() * maxValue); |
|
matrix.set(i, j, value); |
|
} |
|
} |
|
return matrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static eye(rows, columns, value) { |
|
if (columns === undefined) columns = rows; |
|
if (value === undefined) value = 1; |
|
var min = Math.min(rows, columns); |
|
var matrix = this.zeros(rows, columns); |
|
for (var i = 0; i < min; i++) { |
|
matrix.set(i, i, value); |
|
} |
|
return matrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static diag(data, rows, columns) { |
|
var l = data.length; |
|
if (rows === undefined) rows = l; |
|
if (columns === undefined) columns = rows; |
|
var min = Math.min(l, rows, columns); |
|
var matrix = this.zeros(rows, columns); |
|
for (var i = 0; i < min; i++) { |
|
matrix.set(i, i, data[i]); |
|
} |
|
return matrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static min(matrix1, matrix2) { |
|
matrix1 = this.checkMatrix(matrix1); |
|
matrix2 = this.checkMatrix(matrix2); |
|
var rows = matrix1.rows; |
|
var columns = matrix1.columns; |
|
var result = new this(rows, columns); |
|
for (var i = 0; i < rows; i++) { |
|
for (var j = 0; j < columns; j++) { |
|
result.set(i, j, Math.min(matrix1.get(i, j), matrix2.get(i, j))); |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static max(matrix1, matrix2) { |
|
matrix1 = this.checkMatrix(matrix1); |
|
matrix2 = this.checkMatrix(matrix2); |
|
var rows = matrix1.rows; |
|
var columns = matrix1.columns; |
|
var result = new this(rows, columns); |
|
for (var i = 0; i < rows; i++) { |
|
for (var j = 0; j < columns; j++) { |
|
result.set(i, j, Math.max(matrix1.get(i, j), matrix2.get(i, j))); |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
static checkMatrix(value) { |
|
return Matrix.isMatrix(value) ? value : new this(value); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
static isMatrix(value) { |
|
return (value != null) && (value.klass === 'Matrix'); |
|
} |
|
|
|
|
|
|
|
|
|
get size() { |
|
return this.rows * this.columns; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
apply(callback) { |
|
if (typeof callback !== 'function') { |
|
throw new TypeError('callback must be a function'); |
|
} |
|
var ii = this.rows; |
|
var jj = this.columns; |
|
for (var i = 0; i < ii; i++) { |
|
for (var j = 0; j < jj; j++) { |
|
callback.call(this, i, j); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
to1DArray() { |
|
var array = new Array(this.size); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
array[i * this.columns + j] = this.get(i, j); |
|
} |
|
} |
|
return array; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
to2DArray() { |
|
var copy = new Array(this.rows); |
|
for (var i = 0; i < this.rows; i++) { |
|
copy[i] = new Array(this.columns); |
|
for (var j = 0; j < this.columns; j++) { |
|
copy[i][j] = this.get(i, j); |
|
} |
|
} |
|
return copy; |
|
} |
|
|
|
|
|
|
|
|
|
isRowVector() { |
|
return this.rows === 1; |
|
} |
|
|
|
|
|
|
|
|
|
isColumnVector() { |
|
return this.columns === 1; |
|
} |
|
|
|
|
|
|
|
|
|
isVector() { |
|
return (this.rows === 1) || (this.columns === 1); |
|
} |
|
|
|
|
|
|
|
|
|
isSquare() { |
|
return this.rows === this.columns; |
|
} |
|
|
|
|
|
|
|
|
|
isSymmetric() { |
|
if (this.isSquare()) { |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j <= i; j++) { |
|
if (this.get(i, j) !== this.get(j, i)) { |
|
return false; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
set(rowIndex, columnIndex, value) { |
|
throw new Error('set method is unimplemented'); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
get(rowIndex, columnIndex) { |
|
throw new Error('get method is unimplemented'); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
repeat(rowRep, colRep) { |
|
rowRep = rowRep || 1; |
|
colRep = colRep || 1; |
|
var matrix = new this.constructor[Symbol.species](this.rows * rowRep, this.columns * colRep); |
|
for (var i = 0; i < rowRep; i++) { |
|
for (var j = 0; j < colRep; j++) { |
|
matrix.setSubMatrix(this, this.rows * i, this.columns * j); |
|
} |
|
} |
|
return matrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
fill(value) { |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, value); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
neg() { |
|
return this.mulS(-1); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
getRow(index) { |
|
checkRowIndex(this, index); |
|
var row = new Array(this.columns); |
|
for (var i = 0; i < this.columns; i++) { |
|
row[i] = this.get(index, i); |
|
} |
|
return row; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
getRowVector(index) { |
|
return this.constructor.rowVector(this.getRow(index)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
setRow(index, array) { |
|
checkRowIndex(this, index); |
|
array = checkRowVector(this, array); |
|
for (var i = 0; i < this.columns; i++) { |
|
this.set(index, i, array[i]); |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
swapRows(row1, row2) { |
|
checkRowIndex(this, row1); |
|
checkRowIndex(this, row2); |
|
for (var i = 0; i < this.columns; i++) { |
|
var temp = this.get(row1, i); |
|
this.set(row1, i, this.get(row2, i)); |
|
this.set(row2, i, temp); |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
getColumn(index) { |
|
checkColumnIndex(this, index); |
|
var column = new Array(this.rows); |
|
for (var i = 0; i < this.rows; i++) { |
|
column[i] = this.get(i, index); |
|
} |
|
return column; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
getColumnVector(index) { |
|
return this.constructor.columnVector(this.getColumn(index)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
setColumn(index, array) { |
|
checkColumnIndex(this, index); |
|
array = checkColumnVector(this, array); |
|
for (var i = 0; i < this.rows; i++) { |
|
this.set(i, index, array[i]); |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
swapColumns(column1, column2) { |
|
checkColumnIndex(this, column1); |
|
checkColumnIndex(this, column2); |
|
for (var i = 0; i < this.rows; i++) { |
|
var temp = this.get(i, column1); |
|
this.set(i, column1, this.get(i, column2)); |
|
this.set(i, column2, temp); |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
addRowVector(vector) { |
|
vector = checkRowVector(this, vector); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) + vector[j]); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
subRowVector(vector) { |
|
vector = checkRowVector(this, vector); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) - vector[j]); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
mulRowVector(vector) { |
|
vector = checkRowVector(this, vector); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) * vector[j]); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
divRowVector(vector) { |
|
vector = checkRowVector(this, vector); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) / vector[j]); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
addColumnVector(vector) { |
|
vector = checkColumnVector(this, vector); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) + vector[i]); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
subColumnVector(vector) { |
|
vector = checkColumnVector(this, vector); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) - vector[i]); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
mulColumnVector(vector) { |
|
vector = checkColumnVector(this, vector); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) * vector[i]); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
divColumnVector(vector) { |
|
vector = checkColumnVector(this, vector); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) / vector[i]); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mulRow(index, value) { |
|
checkRowIndex(this, index); |
|
for (var i = 0; i < this.columns; i++) { |
|
this.set(index, i, this.get(index, i) * value); |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mulColumn(index, value) { |
|
checkColumnIndex(this, index); |
|
for (var i = 0; i < this.rows; i++) { |
|
this.set(i, index, this.get(i, index) * value); |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
max() { |
|
var v = this.get(0, 0); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
if (this.get(i, j) > v) { |
|
v = this.get(i, j); |
|
} |
|
} |
|
} |
|
return v; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
maxIndex() { |
|
var v = this.get(0, 0); |
|
var idx = [0, 0]; |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
if (this.get(i, j) > v) { |
|
v = this.get(i, j); |
|
idx[0] = i; |
|
idx[1] = j; |
|
} |
|
} |
|
} |
|
return idx; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
min() { |
|
var v = this.get(0, 0); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
if (this.get(i, j) < v) { |
|
v = this.get(i, j); |
|
} |
|
} |
|
} |
|
return v; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
minIndex() { |
|
var v = this.get(0, 0); |
|
var idx = [0, 0]; |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
if (this.get(i, j) < v) { |
|
v = this.get(i, j); |
|
idx[0] = i; |
|
idx[1] = j; |
|
} |
|
} |
|
} |
|
return idx; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
maxRow(row) { |
|
checkRowIndex(this, row); |
|
var v = this.get(row, 0); |
|
for (var i = 1; i < this.columns; i++) { |
|
if (this.get(row, i) > v) { |
|
v = this.get(row, i); |
|
} |
|
} |
|
return v; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
maxRowIndex(row) { |
|
checkRowIndex(this, row); |
|
var v = this.get(row, 0); |
|
var idx = [row, 0]; |
|
for (var i = 1; i < this.columns; i++) { |
|
if (this.get(row, i) > v) { |
|
v = this.get(row, i); |
|
idx[1] = i; |
|
} |
|
} |
|
return idx; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
minRow(row) { |
|
checkRowIndex(this, row); |
|
var v = this.get(row, 0); |
|
for (var i = 1; i < this.columns; i++) { |
|
if (this.get(row, i) < v) { |
|
v = this.get(row, i); |
|
} |
|
} |
|
return v; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
minRowIndex(row) { |
|
checkRowIndex(this, row); |
|
var v = this.get(row, 0); |
|
var idx = [row, 0]; |
|
for (var i = 1; i < this.columns; i++) { |
|
if (this.get(row, i) < v) { |
|
v = this.get(row, i); |
|
idx[1] = i; |
|
} |
|
} |
|
return idx; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
maxColumn(column) { |
|
checkColumnIndex(this, column); |
|
var v = this.get(0, column); |
|
for (var i = 1; i < this.rows; i++) { |
|
if (this.get(i, column) > v) { |
|
v = this.get(i, column); |
|
} |
|
} |
|
return v; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
maxColumnIndex(column) { |
|
checkColumnIndex(this, column); |
|
var v = this.get(0, column); |
|
var idx = [0, column]; |
|
for (var i = 1; i < this.rows; i++) { |
|
if (this.get(i, column) > v) { |
|
v = this.get(i, column); |
|
idx[0] = i; |
|
} |
|
} |
|
return idx; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
minColumn(column) { |
|
checkColumnIndex(this, column); |
|
var v = this.get(0, column); |
|
for (var i = 1; i < this.rows; i++) { |
|
if (this.get(i, column) < v) { |
|
v = this.get(i, column); |
|
} |
|
} |
|
return v; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
minColumnIndex(column) { |
|
checkColumnIndex(this, column); |
|
var v = this.get(0, column); |
|
var idx = [0, column]; |
|
for (var i = 1; i < this.rows; i++) { |
|
if (this.get(i, column) < v) { |
|
v = this.get(i, column); |
|
idx[0] = i; |
|
} |
|
} |
|
return idx; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
diag() { |
|
var min = Math.min(this.rows, this.columns); |
|
var diag = new Array(min); |
|
for (var i = 0; i < min; i++) { |
|
diag[i] = this.get(i, i); |
|
} |
|
return diag; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sum(by) { |
|
switch (by) { |
|
case 'row': |
|
return sumByRow(this); |
|
case 'column': |
|
return sumByColumn(this); |
|
default: |
|
return sumAll(this); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
mean() { |
|
return this.sum() / this.size; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
prod() { |
|
var prod = 1; |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
prod *= this.get(i, j); |
|
} |
|
} |
|
return prod; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
norm(type = 'frobenius') { |
|
var result = 0; |
|
if (type === 'max') { |
|
return this.max(); |
|
} else if (type === 'frobenius') { |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
result = result + this.get(i, j) * this.get(i, j); |
|
} |
|
} |
|
return Math.sqrt(result); |
|
} else { |
|
throw new RangeError(`unknown norm type: ${type}`); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
cumulativeSum() { |
|
var sum = 0; |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
sum += this.get(i, j); |
|
this.set(i, j, sum); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
dot(vector2) { |
|
if (Matrix.isMatrix(vector2)) vector2 = vector2.to1DArray(); |
|
var vector1 = this.to1DArray(); |
|
if (vector1.length !== vector2.length) { |
|
throw new RangeError('vectors do not have the same size'); |
|
} |
|
var dot = 0; |
|
for (var i = 0; i < vector1.length; i++) { |
|
dot += vector1[i] * vector2[i]; |
|
} |
|
return dot; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
mmul(other) { |
|
other = this.constructor.checkMatrix(other); |
|
if (this.columns !== other.rows) { |
|
|
|
console.warn('Number of columns of left matrix are not equal to number of rows of right matrix.'); |
|
} |
|
|
|
var m = this.rows; |
|
var n = this.columns; |
|
var p = other.columns; |
|
|
|
var result = new this.constructor[Symbol.species](m, p); |
|
|
|
var Bcolj = new Array(n); |
|
for (var j = 0; j < p; j++) { |
|
for (var k = 0; k < n; k++) { |
|
Bcolj[k] = other.get(k, j); |
|
} |
|
|
|
for (var i = 0; i < m; i++) { |
|
var s = 0; |
|
for (k = 0; k < n; k++) { |
|
s += this.get(i, k) * Bcolj[k]; |
|
} |
|
|
|
result.set(i, j, s); |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
strassen2x2(other) { |
|
var result = new this.constructor[Symbol.species](2, 2); |
|
const a11 = this.get(0, 0); |
|
const b11 = other.get(0, 0); |
|
const a12 = this.get(0, 1); |
|
const b12 = other.get(0, 1); |
|
const a21 = this.get(1, 0); |
|
const b21 = other.get(1, 0); |
|
const a22 = this.get(1, 1); |
|
const b22 = other.get(1, 1); |
|
|
|
|
|
const m1 = (a11 + a22) * (b11 + b22); |
|
const m2 = (a21 + a22) * b11; |
|
const m3 = a11 * (b12 - b22); |
|
const m4 = a22 * (b21 - b11); |
|
const m5 = (a11 + a12) * b22; |
|
const m6 = (a21 - a11) * (b11 + b12); |
|
const m7 = (a12 - a22) * (b21 + b22); |
|
|
|
|
|
const c00 = m1 + m4 - m5 + m7; |
|
const c01 = m3 + m5; |
|
const c10 = m2 + m4; |
|
const c11 = m1 - m2 + m3 + m6; |
|
|
|
result.set(0, 0, c00); |
|
result.set(0, 1, c01); |
|
result.set(1, 0, c10); |
|
result.set(1, 1, c11); |
|
return result; |
|
} |
|
|
|
strassen3x3(other) { |
|
var result = new this.constructor[Symbol.species](3, 3); |
|
|
|
const a00 = this.get(0, 0); |
|
const a01 = this.get(0, 1); |
|
const a02 = this.get(0, 2); |
|
const a10 = this.get(1, 0); |
|
const a11 = this.get(1, 1); |
|
const a12 = this.get(1, 2); |
|
const a20 = this.get(2, 0); |
|
const a21 = this.get(2, 1); |
|
const a22 = this.get(2, 2); |
|
|
|
const b00 = other.get(0, 0); |
|
const b01 = other.get(0, 1); |
|
const b02 = other.get(0, 2); |
|
const b10 = other.get(1, 0); |
|
const b11 = other.get(1, 1); |
|
const b12 = other.get(1, 2); |
|
const b20 = other.get(2, 0); |
|
const b21 = other.get(2, 1); |
|
const b22 = other.get(2, 2); |
|
|
|
const m1 = (a00 + a01 + a02 - a10 - a11 - a21 - a22) * b11; |
|
const m2 = (a00 - a10) * (-b01 + b11); |
|
const m3 = a11 * (-b00 + b01 + b10 - b11 - b12 - b20 + b22); |
|
const m4 = (-a00 + a10 + a11) * (b00 - b01 + b11); |
|
const m5 = (a10 + a11) * (-b00 + b01); |
|
const m6 = a00 * b00; |
|
const m7 = (-a00 + a20 + a21) * (b00 - b02 + b12); |
|
const m8 = (-a00 + a20) * (b02 - b12); |
|
const m9 = (a20 + a21) * (-b00 + b02); |
|
const m10 = (a00 + a01 + a02 - a11 - a12 - a20 - a21) * b12; |
|
const m11 = a21 * (-b00 + b02 + b10 - b11 - b12 - b20 + b21); |
|
const m12 = (-a02 + a21 + a22) * (b11 + b20 - b21); |
|
const m13 = (a02 - a22) * (b11 - b21); |
|
const m14 = a02 * b20; |
|
const m15 = (a21 + a22) * (-b20 + b21); |
|
const m16 = (-a02 + a11 + a12) * (b12 + b20 - b22); |
|
const m17 = (a02 - a12) * (b12 - b22); |
|
const m18 = (a11 + a12) * (-b20 + b22); |
|
const m19 = a01 * b10; |
|
const m20 = a12 * b21; |
|
const m21 = a10 * b02; |
|
const m22 = a20 * b01; |
|
const m23 = a22 * b22; |
|
|
|
const c00 = m6 + m14 + m19; |
|
const c01 = m1 + m4 + m5 + m6 + m12 + m14 + m15; |
|
const c02 = m6 + m7 + m9 + m10 + m14 + m16 + m18; |
|
const c10 = m2 + m3 + m4 + m6 + m14 + m16 + m17; |
|
const c11 = m2 + m4 + m5 + m6 + m20; |
|
const c12 = m14 + m16 + m17 + m18 + m21; |
|
const c20 = m6 + m7 + m8 + m11 + m12 + m13 + m14; |
|
const c21 = m12 + m13 + m14 + m15 + m22; |
|
const c22 = m6 + m7 + m8 + m9 + m23; |
|
|
|
result.set(0, 0, c00); |
|
result.set(0, 1, c01); |
|
result.set(0, 2, c02); |
|
result.set(1, 0, c10); |
|
result.set(1, 1, c11); |
|
result.set(1, 2, c12); |
|
result.set(2, 0, c20); |
|
result.set(2, 1, c21); |
|
result.set(2, 2, c22); |
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
mmulStrassen(y) { |
|
var x = this.clone(); |
|
var r1 = x.rows; |
|
var c1 = x.columns; |
|
var r2 = y.rows; |
|
var c2 = y.columns; |
|
if (c1 !== r2) { |
|
|
|
console.warn(`Multiplying ${r1} x ${c1} and ${r2} x ${c2} matrix: dimensions do not match.`); |
|
} |
|
|
|
|
|
|
|
function embed(mat, rows, cols) { |
|
var r = mat.rows; |
|
var c = mat.columns; |
|
if ((r === rows) && (c === cols)) { |
|
return mat; |
|
} else { |
|
var resultat = Matrix.zeros(rows, cols); |
|
resultat = resultat.setSubMatrix(mat, 0, 0); |
|
return resultat; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
var r = Math.max(r1, r2); |
|
var c = Math.max(c1, c2); |
|
x = embed(x, r, c); |
|
y = embed(y, r, c); |
|
|
|
|
|
function blockMult(a, b, rows, cols) { |
|
|
|
if (rows <= 512 || cols <= 512) { |
|
return a.mmul(b); |
|
} |
|
|
|
|
|
if ((rows % 2 === 1) && (cols % 2 === 1)) { |
|
a = embed(a, rows + 1, cols + 1); |
|
b = embed(b, rows + 1, cols + 1); |
|
} else if (rows % 2 === 1) { |
|
a = embed(a, rows + 1, cols); |
|
b = embed(b, rows + 1, cols); |
|
} else if (cols % 2 === 1) { |
|
a = embed(a, rows, cols + 1); |
|
b = embed(b, rows, cols + 1); |
|
} |
|
|
|
var halfRows = parseInt(a.rows / 2, 10); |
|
var halfCols = parseInt(a.columns / 2, 10); |
|
|
|
var a11 = a.subMatrix(0, halfRows - 1, 0, halfCols - 1); |
|
var b11 = b.subMatrix(0, halfRows - 1, 0, halfCols - 1); |
|
|
|
var a12 = a.subMatrix(0, halfRows - 1, halfCols, a.columns - 1); |
|
var b12 = b.subMatrix(0, halfRows - 1, halfCols, b.columns - 1); |
|
|
|
var a21 = a.subMatrix(halfRows, a.rows - 1, 0, halfCols - 1); |
|
var b21 = b.subMatrix(halfRows, b.rows - 1, 0, halfCols - 1); |
|
|
|
var a22 = a.subMatrix(halfRows, a.rows - 1, halfCols, a.columns - 1); |
|
var b22 = b.subMatrix(halfRows, b.rows - 1, halfCols, b.columns - 1); |
|
|
|
|
|
var m1 = blockMult(Matrix.add(a11, a22), Matrix.add(b11, b22), halfRows, halfCols); |
|
var m2 = blockMult(Matrix.add(a21, a22), b11, halfRows, halfCols); |
|
var m3 = blockMult(a11, Matrix.sub(b12, b22), halfRows, halfCols); |
|
var m4 = blockMult(a22, Matrix.sub(b21, b11), halfRows, halfCols); |
|
var m5 = blockMult(Matrix.add(a11, a12), b22, halfRows, halfCols); |
|
var m6 = blockMult(Matrix.sub(a21, a11), Matrix.add(b11, b12), halfRows, halfCols); |
|
var m7 = blockMult(Matrix.sub(a12, a22), Matrix.add(b21, b22), halfRows, halfCols); |
|
|
|
|
|
var c11 = Matrix.add(m1, m4); |
|
c11.sub(m5); |
|
c11.add(m7); |
|
var c12 = Matrix.add(m3, m5); |
|
var c21 = Matrix.add(m2, m4); |
|
var c22 = Matrix.sub(m1, m2); |
|
c22.add(m3); |
|
c22.add(m6); |
|
|
|
|
|
var resultat = Matrix.zeros(2 * c11.rows, 2 * c11.columns); |
|
resultat = resultat.setSubMatrix(c11, 0, 0); |
|
resultat = resultat.setSubMatrix(c12, c11.rows, 0); |
|
resultat = resultat.setSubMatrix(c21, 0, c11.columns); |
|
resultat = resultat.setSubMatrix(c22, c11.rows, c11.columns); |
|
return resultat.subMatrix(0, rows - 1, 0, cols - 1); |
|
} |
|
return blockMult(x, y, r, c); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scaleRows(min, max) { |
|
min = min === undefined ? 0 : min; |
|
max = max === undefined ? 1 : max; |
|
if (min >= max) { |
|
throw new RangeError('min should be strictly smaller than max'); |
|
} |
|
var newMatrix = this.constructor.empty(this.rows, this.columns); |
|
for (var i = 0; i < this.rows; i++) { |
|
var scaled = ml_array_rescale_lib_es6(this.getRow(i), { min, max }); |
|
newMatrix.setRow(i, scaled); |
|
} |
|
return newMatrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scaleColumns(min, max) { |
|
min = min === undefined ? 0 : min; |
|
max = max === undefined ? 1 : max; |
|
if (min >= max) { |
|
throw new RangeError('min should be strictly smaller than max'); |
|
} |
|
var newMatrix = this.constructor.empty(this.rows, this.columns); |
|
for (var i = 0; i < this.columns; i++) { |
|
var scaled = ml_array_rescale_lib_es6(this.getColumn(i), { |
|
min: min, |
|
max: max |
|
}); |
|
newMatrix.setColumn(i, scaled); |
|
} |
|
return newMatrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kroneckerProduct(other) { |
|
other = this.constructor.checkMatrix(other); |
|
|
|
var m = this.rows; |
|
var n = this.columns; |
|
var p = other.rows; |
|
var q = other.columns; |
|
|
|
var result = new this.constructor[Symbol.species](m * p, n * q); |
|
for (var i = 0; i < m; i++) { |
|
for (var j = 0; j < n; j++) { |
|
for (var k = 0; k < p; k++) { |
|
for (var l = 0; l < q; l++) { |
|
result[p * i + k][q * j + l] = this.get(i, j) * other.get(k, l); |
|
} |
|
} |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
transpose() { |
|
var result = new this.constructor[Symbol.species](this.columns, this.rows); |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
result.set(j, i, this.get(i, j)); |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
sortRows(compareFunction) { |
|
if (compareFunction === undefined) compareFunction = compareNumbers; |
|
for (var i = 0; i < this.rows; i++) { |
|
this.setRow(i, this.getRow(i).sort(compareFunction)); |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
sortColumns(compareFunction) { |
|
if (compareFunction === undefined) compareFunction = compareNumbers; |
|
for (var i = 0; i < this.columns; i++) { |
|
this.setColumn(i, this.getColumn(i).sort(compareFunction)); |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
subMatrix(startRow, endRow, startColumn, endColumn) { |
|
checkRange(this, startRow, endRow, startColumn, endColumn); |
|
var newMatrix = new this.constructor[Symbol.species](endRow - startRow + 1, endColumn - startColumn + 1); |
|
for (var i = startRow; i <= endRow; i++) { |
|
for (var j = startColumn; j <= endColumn; j++) { |
|
newMatrix[i - startRow][j - startColumn] = this.get(i, j); |
|
} |
|
} |
|
return newMatrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
subMatrixRow(indices, startColumn, endColumn) { |
|
if (startColumn === undefined) startColumn = 0; |
|
if (endColumn === undefined) endColumn = this.columns - 1; |
|
if ((startColumn > endColumn) || (startColumn < 0) || (startColumn >= this.columns) || (endColumn < 0) || (endColumn >= this.columns)) { |
|
throw new RangeError('Argument out of range'); |
|
} |
|
|
|
var newMatrix = new this.constructor[Symbol.species](indices.length, endColumn - startColumn + 1); |
|
for (var i = 0; i < indices.length; i++) { |
|
for (var j = startColumn; j <= endColumn; j++) { |
|
if (indices[i] < 0 || indices[i] >= this.rows) { |
|
throw new RangeError(`Row index out of range: ${indices[i]}`); |
|
} |
|
newMatrix.set(i, j - startColumn, this.get(indices[i], j)); |
|
} |
|
} |
|
return newMatrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
subMatrixColumn(indices, startRow, endRow) { |
|
if (startRow === undefined) startRow = 0; |
|
if (endRow === undefined) endRow = this.rows - 1; |
|
if ((startRow > endRow) || (startRow < 0) || (startRow >= this.rows) || (endRow < 0) || (endRow >= this.rows)) { |
|
throw new RangeError('Argument out of range'); |
|
} |
|
|
|
var newMatrix = new this.constructor[Symbol.species](endRow - startRow + 1, indices.length); |
|
for (var i = 0; i < indices.length; i++) { |
|
for (var j = startRow; j <= endRow; j++) { |
|
if (indices[i] < 0 || indices[i] >= this.columns) { |
|
throw new RangeError(`Column index out of range: ${indices[i]}`); |
|
} |
|
newMatrix.set(j - startRow, i, this.get(j, indices[i])); |
|
} |
|
} |
|
return newMatrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
setSubMatrix(matrix, startRow, startColumn) { |
|
matrix = this.constructor.checkMatrix(matrix); |
|
var endRow = startRow + matrix.rows - 1; |
|
var endColumn = startColumn + matrix.columns - 1; |
|
checkRange(this, startRow, endRow, startColumn, endColumn); |
|
for (var i = 0; i < matrix.rows; i++) { |
|
for (var j = 0; j < matrix.columns; j++) { |
|
this[startRow + i][startColumn + j] = matrix.get(i, j); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
selection(rowIndices, columnIndices) { |
|
var indices = checkIndices(this, rowIndices, columnIndices); |
|
var newMatrix = new this.constructor[Symbol.species](rowIndices.length, columnIndices.length); |
|
for (var i = 0; i < indices.row.length; i++) { |
|
var rowIndex = indices.row[i]; |
|
for (var j = 0; j < indices.column.length; j++) { |
|
var columnIndex = indices.column[j]; |
|
newMatrix[i][j] = this.get(rowIndex, columnIndex); |
|
} |
|
} |
|
return newMatrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
trace() { |
|
var min = Math.min(this.rows, this.columns); |
|
var trace = 0; |
|
for (var i = 0; i < min; i++) { |
|
trace += this.get(i, i); |
|
} |
|
return trace; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transposeView() { |
|
return new transpose_MatrixTransposeView(this); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
rowView(row) { |
|
checkRowIndex(this, row); |
|
return new row_MatrixRowView(this, row); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
columnView(column) { |
|
checkColumnIndex(this, column); |
|
return new column_MatrixColumnView(this, column); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
flipRowView() { |
|
return new flipRow_MatrixFlipRowView(this); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
flipColumnView() { |
|
return new flipColumn_MatrixFlipColumnView(this); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
subMatrixView(startRow, endRow, startColumn, endColumn) { |
|
return new sub_MatrixSubView(this, startRow, endRow, startColumn, endColumn); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
selectionView(rowIndices, columnIndices) { |
|
return new selection_MatrixSelectionView(this, rowIndices, columnIndices); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rowSelectionView(rowIndices) { |
|
return new rowSelection_MatrixRowSelectionView(this, rowIndices); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
columnSelectionView(columnIndices) { |
|
return new columnSelection_MatrixColumnSelectionView(this, columnIndices); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
det() { |
|
if (this.isSquare()) { |
|
var a, b, c, d; |
|
if (this.columns === 2) { |
|
|
|
a = this.get(0, 0); |
|
b = this.get(0, 1); |
|
c = this.get(1, 0); |
|
d = this.get(1, 1); |
|
|
|
return a * d - (b * c); |
|
} else if (this.columns === 3) { |
|
|
|
var subMatrix0, subMatrix1, subMatrix2; |
|
subMatrix0 = this.selectionView([1, 2], [1, 2]); |
|
subMatrix1 = this.selectionView([1, 2], [0, 2]); |
|
subMatrix2 = this.selectionView([1, 2], [0, 1]); |
|
a = this.get(0, 0); |
|
b = this.get(0, 1); |
|
c = this.get(0, 2); |
|
|
|
return a * subMatrix0.det() - b * subMatrix1.det() + c * subMatrix2.det(); |
|
} else { |
|
|
|
return new lu_LuDecomposition(this).determinant; |
|
} |
|
} else { |
|
throw Error('Determinant can only be calculated for a square matrix.'); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
pseudoInverse(threshold) { |
|
if (threshold === undefined) threshold = Number.EPSILON; |
|
var svdSolution = new svd_SingularValueDecomposition(this, { autoTranspose: true }); |
|
|
|
var U = svdSolution.leftSingularVectors; |
|
var V = svdSolution.rightSingularVectors; |
|
var s = svdSolution.diagonal; |
|
|
|
for (var i = 0; i < s.length; i++) { |
|
if (Math.abs(s[i]) > threshold) { |
|
s[i] = 1.0 / s[i]; |
|
} else { |
|
s[i] = 0.0; |
|
} |
|
} |
|
|
|
|
|
s = this.constructor[Symbol.species].diag(s); |
|
return V.mmul(s.mmul(U.transposeView())); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
clone() { |
|
var newMatrix = new this.constructor[Symbol.species](this.rows, this.columns); |
|
for (var row = 0; row < this.rows; row++) { |
|
for (var column = 0; column < this.columns; column++) { |
|
newMatrix.set(row, column, this.get(row, column)); |
|
} |
|
} |
|
return newMatrix; |
|
} |
|
} |
|
|
|
Matrix.prototype.klass = 'Matrix'; |
|
|
|
function compareNumbers(a, b) { |
|
return a - b; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
Matrix.random = Matrix.rand; |
|
Matrix.diagonal = Matrix.diag; |
|
Matrix.prototype.diagonal = Matrix.prototype.diag; |
|
Matrix.identity = Matrix.eye; |
|
Matrix.prototype.negate = Matrix.prototype.neg; |
|
Matrix.prototype.tensorProduct = Matrix.prototype.kroneckerProduct; |
|
Matrix.prototype.determinant = Matrix.prototype.det; |
|
|
|
|
|
|
|
|
|
|
|
var inplaceOperator = ` |
|
(function %name%(value) { |
|
if (typeof value === 'number') return this.%name%S(value); |
|
return this.%name%M(value); |
|
}) |
|
`; |
|
|
|
var inplaceOperatorScalar = ` |
|
(function %name%S(value) { |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) %op% value); |
|
} |
|
} |
|
return this; |
|
}) |
|
`; |
|
|
|
var inplaceOperatorMatrix = ` |
|
(function %name%M(matrix) { |
|
matrix = this.constructor.checkMatrix(matrix); |
|
if (this.rows !== matrix.rows || |
|
this.columns !== matrix.columns) { |
|
throw new RangeError('Matrices dimensions must be equal'); |
|
} |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, this.get(i, j) %op% matrix.get(i, j)); |
|
} |
|
} |
|
return this; |
|
}) |
|
`; |
|
|
|
var staticOperator = ` |
|
(function %name%(matrix, value) { |
|
var newMatrix = new this[Symbol.species](matrix); |
|
return newMatrix.%name%(value); |
|
}) |
|
`; |
|
|
|
var inplaceMethod = ` |
|
(function %name%() { |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, %method%(this.get(i, j))); |
|
} |
|
} |
|
return this; |
|
}) |
|
`; |
|
|
|
var staticMethod = ` |
|
(function %name%(matrix) { |
|
var newMatrix = new this[Symbol.species](matrix); |
|
return newMatrix.%name%(); |
|
}) |
|
`; |
|
|
|
var inplaceMethodWithArgs = ` |
|
(function %name%(%args%) { |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, %method%(this.get(i, j), %args%)); |
|
} |
|
} |
|
return this; |
|
}) |
|
`; |
|
|
|
var staticMethodWithArgs = ` |
|
(function %name%(matrix, %args%) { |
|
var newMatrix = new this[Symbol.species](matrix); |
|
return newMatrix.%name%(%args%); |
|
}) |
|
`; |
|
|
|
|
|
var inplaceMethodWithOneArgScalar = ` |
|
(function %name%S(value) { |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, %method%(this.get(i, j), value)); |
|
} |
|
} |
|
return this; |
|
}) |
|
`; |
|
var inplaceMethodWithOneArgMatrix = ` |
|
(function %name%M(matrix) { |
|
matrix = this.constructor.checkMatrix(matrix); |
|
if (this.rows !== matrix.rows || |
|
this.columns !== matrix.columns) { |
|
throw new RangeError('Matrices dimensions must be equal'); |
|
} |
|
for (var i = 0; i < this.rows; i++) { |
|
for (var j = 0; j < this.columns; j++) { |
|
this.set(i, j, %method%(this.get(i, j), matrix.get(i, j))); |
|
} |
|
} |
|
return this; |
|
}) |
|
`; |
|
|
|
var inplaceMethodWithOneArg = ` |
|
(function %name%(value) { |
|
if (typeof value === 'number') return this.%name%S(value); |
|
return this.%name%M(value); |
|
}) |
|
`; |
|
|
|
var staticMethodWithOneArg = staticMethodWithArgs; |
|
|
|
var operators = [ |
|
|
|
['+', 'add'], |
|
['-', 'sub', 'subtract'], |
|
['*', 'mul', 'multiply'], |
|
['/', 'div', 'divide'], |
|
['%', 'mod', 'modulus'], |
|
|
|
['&', 'and'], |
|
['|', 'or'], |
|
['^', 'xor'], |
|
['<<', 'leftShift'], |
|
['>>', 'signPropagatingRightShift'], |
|
['>>>', 'rightShift', 'zeroFillRightShift'] |
|
]; |
|
|
|
var i; |
|
var eval2 = eval; |
|
for (var operator of operators) { |
|
var inplaceOp = eval2(fillTemplateFunction(inplaceOperator, { name: operator[1], op: operator[0] })); |
|
var inplaceOpS = eval2(fillTemplateFunction(inplaceOperatorScalar, { name: `${operator[1]}S`, op: operator[0] })); |
|
var inplaceOpM = eval2(fillTemplateFunction(inplaceOperatorMatrix, { name: `${operator[1]}M`, op: operator[0] })); |
|
var staticOp = eval2(fillTemplateFunction(staticOperator, { name: operator[1] })); |
|
for (i = 1; i < operator.length; i++) { |
|
Matrix.prototype[operator[i]] = inplaceOp; |
|
Matrix.prototype[`${operator[i]}S`] = inplaceOpS; |
|
Matrix.prototype[`${operator[i]}M`] = inplaceOpM; |
|
Matrix[operator[i]] = staticOp; |
|
} |
|
} |
|
|
|
var methods = [['~', 'not']]; |
|
|
|
[ |
|
'abs', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', 'cbrt', 'ceil', |
|
'clz32', 'cos', 'cosh', 'exp', 'expm1', 'floor', 'fround', 'log', 'log1p', |
|
'log10', 'log2', 'round', 'sign', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc' |
|
].forEach(function (mathMethod) { |
|
methods.push([`Math.${mathMethod}`, mathMethod]); |
|
}); |
|
|
|
for (var method of methods) { |
|
var inplaceMeth = eval2(fillTemplateFunction(inplaceMethod, { name: method[1], method: method[0] })); |
|
var staticMeth = eval2(fillTemplateFunction(staticMethod, { name: method[1] })); |
|
for (i = 1; i < method.length; i++) { |
|
Matrix.prototype[method[i]] = inplaceMeth; |
|
Matrix[method[i]] = staticMeth; |
|
} |
|
} |
|
|
|
var methodsWithArgs = [['Math.pow', 1, 'pow']]; |
|
|
|
for (var methodWithArg of methodsWithArgs) { |
|
var args = 'arg0'; |
|
for (i = 1; i < methodWithArg[1]; i++) { |
|
args += `, arg${i}`; |
|
} |
|
if (methodWithArg[1] !== 1) { |
|
var inplaceMethWithArgs = eval2(fillTemplateFunction(inplaceMethodWithArgs, { |
|
name: methodWithArg[2], |
|
method: methodWithArg[0], |
|
args: args |
|
})); |
|
var staticMethWithArgs = eval2(fillTemplateFunction(staticMethodWithArgs, { name: methodWithArg[2], args: args })); |
|
for (i = 2; i < methodWithArg.length; i++) { |
|
Matrix.prototype[methodWithArg[i]] = inplaceMethWithArgs; |
|
Matrix[methodWithArg[i]] = staticMethWithArgs; |
|
} |
|
} else { |
|
var tmplVar = { |
|
name: methodWithArg[2], |
|
args: args, |
|
method: methodWithArg[0] |
|
}; |
|
var inplaceMethod2 = eval2(fillTemplateFunction(inplaceMethodWithOneArg, tmplVar)); |
|
var inplaceMethodS = eval2(fillTemplateFunction(inplaceMethodWithOneArgScalar, tmplVar)); |
|
var inplaceMethodM = eval2(fillTemplateFunction(inplaceMethodWithOneArgMatrix, tmplVar)); |
|
var staticMethod2 = eval2(fillTemplateFunction(staticMethodWithOneArg, tmplVar)); |
|
for (i = 2; i < methodWithArg.length; i++) { |
|
Matrix.prototype[methodWithArg[i]] = inplaceMethod2; |
|
Matrix.prototype[`${methodWithArg[i]}M`] = inplaceMethodM; |
|
Matrix.prototype[`${methodWithArg[i]}S`] = inplaceMethodS; |
|
Matrix[methodWithArg[i]] = staticMethod2; |
|
} |
|
} |
|
} |
|
|
|
function fillTemplateFunction(template, values) { |
|
for (var value in values) { |
|
template = template.replace(new RegExp(`%${value}%`, 'g'), values[value]); |
|
} |
|
return template; |
|
} |
|
|
|
return Matrix; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
class matrix_Matrix extends AbstractMatrix(Array) { |
|
constructor(nRows, nColumns) { |
|
var i; |
|
if (arguments.length === 1 && typeof nRows === 'number') { |
|
return new Array(nRows); |
|
} |
|
if (matrix_Matrix.isMatrix(nRows)) { |
|
return nRows.clone(); |
|
} else if (Number.isInteger(nRows) && nRows > 0) { |
|
|
|
super(nRows); |
|
if (Number.isInteger(nColumns) && nColumns > 0) { |
|
for (i = 0; i < nRows; i++) { |
|
this[i] = new Array(nColumns); |
|
} |
|
} else { |
|
throw new TypeError('nColumns must be a positive integer'); |
|
} |
|
} else if (Array.isArray(nRows)) { |
|
|
|
const matrix = nRows; |
|
nRows = matrix.length; |
|
nColumns = matrix[0].length; |
|
if (typeof nColumns !== 'number' || nColumns === 0) { |
|
throw new TypeError( |
|
'Data must be a 2D array with at least one element' |
|
); |
|
} |
|
super(nRows); |
|
for (i = 0; i < nRows; i++) { |
|
if (matrix[i].length !== nColumns) { |
|
throw new RangeError('Inconsistent array dimensions'); |
|
} |
|
this[i] = [].concat(matrix[i]); |
|
} |
|
} else { |
|
throw new TypeError( |
|
'First argument must be a positive number or an array' |
|
); |
|
} |
|
this.rows = nRows; |
|
this.columns = nColumns; |
|
return this; |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this[rowIndex][columnIndex] = value; |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this[rowIndex][columnIndex]; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
removeRow(index) { |
|
checkRowIndex(this, index); |
|
if (this.rows === 1) { |
|
throw new RangeError('A matrix cannot have less than one row'); |
|
} |
|
this.splice(index, 1); |
|
this.rows -= 1; |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
addRow(index, array) { |
|
if (array === undefined) { |
|
array = index; |
|
index = this.rows; |
|
} |
|
checkRowIndex(this, index, true); |
|
array = checkRowVector(this, array, true); |
|
this.splice(index, 0, array); |
|
this.rows += 1; |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
removeColumn(index) { |
|
checkColumnIndex(this, index); |
|
if (this.columns === 1) { |
|
throw new RangeError('A matrix cannot have less than one column'); |
|
} |
|
for (var i = 0; i < this.rows; i++) { |
|
this[i].splice(index, 1); |
|
} |
|
this.columns -= 1; |
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
addColumn(index, array) { |
|
if (typeof array === 'undefined') { |
|
array = index; |
|
index = this.columns; |
|
} |
|
checkColumnIndex(this, index, true); |
|
array = checkColumnVector(this, array); |
|
for (var i = 0; i < this.rows; i++) { |
|
this[i].splice(index, 0, array[i]); |
|
} |
|
this.columns += 1; |
|
return this; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
class WrapperMatrix1D_WrapperMatrix1D extends AbstractMatrix() { |
|
|
|
|
|
|
|
|
|
|
|
|
|
constructor(data, options = {}) { |
|
const { rows = 1 } = options; |
|
|
|
if (data.length % rows !== 0) { |
|
throw new Error('the data length is not divisible by the number of rows'); |
|
} |
|
super(); |
|
this.rows = rows; |
|
this.columns = data.length / rows; |
|
this.data = data; |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
var index = this._calculateIndex(rowIndex, columnIndex); |
|
this.data[index] = value; |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
var index = this._calculateIndex(rowIndex, columnIndex); |
|
return this.data[index]; |
|
} |
|
|
|
_calculateIndex(row, column) { |
|
return row * this.columns + column; |
|
} |
|
|
|
static get [Symbol.species]() { |
|
return matrix_Matrix; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
class WrapperMatrix2D_WrapperMatrix2D extends AbstractMatrix() { |
|
|
|
|
|
|
|
|
|
constructor(data) { |
|
super(); |
|
this.data = data; |
|
this.rows = data.length; |
|
this.columns = data[0].length; |
|
} |
|
|
|
set(rowIndex, columnIndex, value) { |
|
this.data[rowIndex][columnIndex] = value; |
|
return this; |
|
} |
|
|
|
get(rowIndex, columnIndex) { |
|
return this.data[rowIndex][columnIndex]; |
|
} |
|
|
|
static get [Symbol.species]() { |
|
return matrix_Matrix; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function wrap(array, options) { |
|
if (Array.isArray(array)) { |
|
if (array[0] && Array.isArray(array[0])) { |
|
return new WrapperMatrix2D_WrapperMatrix2D(array); |
|
} else { |
|
return new WrapperMatrix1D_WrapperMatrix1D(array, options); |
|
} |
|
} else { |
|
throw new Error('the argument is not an array'); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class qr_QrDecomposition { |
|
constructor(value) { |
|
value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value); |
|
|
|
var qr = value.clone(); |
|
var m = value.rows; |
|
var n = value.columns; |
|
var rdiag = new Array(n); |
|
var i, j, k, s; |
|
|
|
for (k = 0; k < n; k++) { |
|
var nrm = 0; |
|
for (i = k; i < m; i++) { |
|
nrm = hypotenuse(nrm, qr.get(i, k)); |
|
} |
|
if (nrm !== 0) { |
|
if (qr.get(k, k) < 0) { |
|
nrm = -nrm; |
|
} |
|
for (i = k; i < m; i++) { |
|
qr.set(i, k, qr.get(i, k) / nrm); |
|
} |
|
qr.set(k, k, qr.get(k, k) + 1); |
|
for (j = k + 1; j < n; j++) { |
|
s = 0; |
|
for (i = k; i < m; i++) { |
|
s += qr.get(i, k) * qr.get(i, j); |
|
} |
|
s = -s / qr.get(k, k); |
|
for (i = k; i < m; i++) { |
|
qr.set(i, j, qr.get(i, j) + s * qr.get(i, k)); |
|
} |
|
} |
|
} |
|
rdiag[k] = -nrm; |
|
} |
|
|
|
this.QR = qr; |
|
this.Rdiag = rdiag; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
solve(value) { |
|
value = matrix_Matrix.checkMatrix(value); |
|
|
|
var qr = this.QR; |
|
var m = qr.rows; |
|
|
|
if (value.rows !== m) { |
|
throw new Error('Matrix row dimensions must agree'); |
|
} |
|
if (!this.isFullRank()) { |
|
throw new Error('Matrix is rank deficient'); |
|
} |
|
|
|
var count = value.columns; |
|
var X = value.clone(); |
|
var n = qr.columns; |
|
var i, j, k, s; |
|
|
|
for (k = 0; k < n; k++) { |
|
for (j = 0; j < count; j++) { |
|
s = 0; |
|
for (i = k; i < m; i++) { |
|
s += qr[i][k] * X[i][j]; |
|
} |
|
s = -s / qr[k][k]; |
|
for (i = k; i < m; i++) { |
|
X[i][j] += s * qr[i][k]; |
|
} |
|
} |
|
} |
|
for (k = n - 1; k >= 0; k--) { |
|
for (j = 0; j < count; j++) { |
|
X[k][j] /= this.Rdiag[k]; |
|
} |
|
for (i = 0; i < k; i++) { |
|
for (j = 0; j < count; j++) { |
|
X[i][j] -= X[k][j] * qr[i][k]; |
|
} |
|
} |
|
} |
|
|
|
return X.subMatrix(0, n - 1, 0, count - 1); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
isFullRank() { |
|
var columns = this.QR.columns; |
|
for (var i = 0; i < columns; i++) { |
|
if (this.Rdiag[i] === 0) { |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get upperTriangularMatrix() { |
|
var qr = this.QR; |
|
var n = qr.columns; |
|
var X = new matrix_Matrix(n, n); |
|
var i, j; |
|
for (i = 0; i < n; i++) { |
|
for (j = 0; j < n; j++) { |
|
if (i < j) { |
|
X[i][j] = qr[i][j]; |
|
} else if (i === j) { |
|
X[i][j] = this.Rdiag[i]; |
|
} else { |
|
X[i][j] = 0; |
|
} |
|
} |
|
} |
|
return X; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get orthogonalMatrix() { |
|
var qr = this.QR; |
|
var rows = qr.rows; |
|
var columns = qr.columns; |
|
var X = new matrix_Matrix(rows, columns); |
|
var i, j, k, s; |
|
|
|
for (k = columns - 1; k >= 0; k--) { |
|
for (i = 0; i < rows; i++) { |
|
X[i][k] = 0; |
|
} |
|
X[k][k] = 1; |
|
for (j = k; j < columns; j++) { |
|
if (qr[k][k] !== 0) { |
|
s = 0; |
|
for (i = k; i < rows; i++) { |
|
s += qr[i][k] * X[i][j]; |
|
} |
|
|
|
s = -s / qr[k][k]; |
|
|
|
for (i = k; i < rows; i++) { |
|
X[i][j] += s * qr[i][k]; |
|
} |
|
} |
|
} |
|
} |
|
return X; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function inverse(matrix, useSVD = false) { |
|
matrix = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(matrix); |
|
if (useSVD) { |
|
return new svd_SingularValueDecomposition(matrix).inverse(); |
|
} else { |
|
return solve(matrix, matrix_Matrix.eye(matrix.rows)); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function solve(leftHandSide, rightHandSide, useSVD = false) { |
|
leftHandSide = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(leftHandSide); |
|
rightHandSide = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(rightHandSide); |
|
if (useSVD) { |
|
return new svd_SingularValueDecomposition(leftHandSide).solve(rightHandSide); |
|
} else { |
|
return leftHandSide.isSquare() |
|
? new lu_LuDecomposition(leftHandSide).solve(rightHandSide) |
|
: new qr_QrDecomposition(leftHandSide).solve(rightHandSide); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function xrange(n, exception) { |
|
var range = []; |
|
for (var i = 0; i < n; i++) { |
|
if (i !== exception) { |
|
range.push(i); |
|
} |
|
} |
|
return range; |
|
} |
|
|
|
|
|
function dependenciesOneRow( |
|
error, |
|
matrix, |
|
index, |
|
thresholdValue = 10e-10, |
|
thresholdError = 10e-10 |
|
) { |
|
if (error > thresholdError) { |
|
return new Array(matrix.rows + 1).fill(0); |
|
} else { |
|
var returnArray = matrix.addRow(index, [0]); |
|
for (var i = 0; i < returnArray.rows; i++) { |
|
if (Math.abs(returnArray.get(i, 0)) < thresholdValue) { |
|
returnArray.set(i, 0, 0); |
|
} |
|
} |
|
return returnArray.to1DArray(); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function linearDependencies(matrix, options = {}) { |
|
const { thresholdValue = 10e-10, thresholdError = 10e-10 } = options; |
|
|
|
var n = matrix.rows; |
|
var results = new matrix_Matrix(n, n); |
|
|
|
for (var i = 0; i < n; i++) { |
|
var b = matrix_Matrix.columnVector(matrix.getRow(i)); |
|
var Abis = matrix.subMatrixRow(xrange(n, i)).transposeView(); |
|
var svd = new svd_SingularValueDecomposition(Abis); |
|
var x = svd.solve(b); |
|
var error = lib_es6( |
|
matrix_Matrix.sub(b, Abis.mmul(x)) |
|
.abs() |
|
.to1DArray() |
|
); |
|
results.setRow( |
|
i, |
|
dependenciesOneRow(error, x, i, thresholdValue, thresholdError) |
|
); |
|
} |
|
return results; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class evd_EigenvalueDecomposition { |
|
constructor(matrix, options = {}) { |
|
const { assumeSymmetric = false } = options; |
|
|
|
matrix = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(matrix); |
|
if (!matrix.isSquare()) { |
|
throw new Error('Matrix is not a square matrix'); |
|
} |
|
|
|
var n = matrix.columns; |
|
var V = getFilled2DArray(n, n, 0); |
|
var d = new Array(n); |
|
var e = new Array(n); |
|
var value = matrix; |
|
var i, j; |
|
|
|
var isSymmetric = false; |
|
if (assumeSymmetric) { |
|
isSymmetric = true; |
|
} else { |
|
isSymmetric = matrix.isSymmetric(); |
|
} |
|
|
|
if (isSymmetric) { |
|
for (i = 0; i < n; i++) { |
|
for (j = 0; j < n; j++) { |
|
V[i][j] = value.get(i, j); |
|
} |
|
} |
|
tred2(n, e, d, V); |
|
tql2(n, e, d, V); |
|
} else { |
|
var H = getFilled2DArray(n, n, 0); |
|
var ort = new Array(n); |
|
for (j = 0; j < n; j++) { |
|
for (i = 0; i < n; i++) { |
|
H[i][j] = value.get(i, j); |
|
} |
|
} |
|
orthes(n, H, ort, V); |
|
hqr2(n, e, d, V, H); |
|
} |
|
|
|
this.n = n; |
|
this.e = e; |
|
this.d = d; |
|
this.V = V; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get realEigenvalues() { |
|
return this.d; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get imaginaryEigenvalues() { |
|
return this.e; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get eigenvectorMatrix() { |
|
if (!matrix_Matrix.isMatrix(this.V)) { |
|
this.V = new matrix_Matrix(this.V); |
|
} |
|
return this.V; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get diagonalMatrix() { |
|
var n = this.n; |
|
var e = this.e; |
|
var d = this.d; |
|
var X = new matrix_Matrix(n, n); |
|
var i, j; |
|
for (i = 0; i < n; i++) { |
|
for (j = 0; j < n; j++) { |
|
X[i][j] = 0; |
|
} |
|
X[i][i] = d[i]; |
|
if (e[i] > 0) { |
|
X[i][i + 1] = e[i]; |
|
} else if (e[i] < 0) { |
|
X[i][i - 1] = e[i]; |
|
} |
|
} |
|
return X; |
|
} |
|
} |
|
|
|
function tred2(n, e, d, V) { |
|
var f, g, h, i, j, k, hh, scale; |
|
|
|
for (j = 0; j < n; j++) { |
|
d[j] = V[n - 1][j]; |
|
} |
|
|
|
for (i = n - 1; i > 0; i--) { |
|
scale = 0; |
|
h = 0; |
|
for (k = 0; k < i; k++) { |
|
scale = scale + Math.abs(d[k]); |
|
} |
|
|
|
if (scale === 0) { |
|
e[i] = d[i - 1]; |
|
for (j = 0; j < i; j++) { |
|
d[j] = V[i - 1][j]; |
|
V[i][j] = 0; |
|
V[j][i] = 0; |
|
} |
|
} else { |
|
for (k = 0; k < i; k++) { |
|
d[k] /= scale; |
|
h += d[k] * d[k]; |
|
} |
|
|
|
f = d[i - 1]; |
|
g = Math.sqrt(h); |
|
if (f > 0) { |
|
g = -g; |
|
} |
|
|
|
e[i] = scale * g; |
|
h = h - f * g; |
|
d[i - 1] = f - g; |
|
for (j = 0; j < i; j++) { |
|
e[j] = 0; |
|
} |
|
|
|
for (j = 0; j < i; j++) { |
|
f = d[j]; |
|
V[j][i] = f; |
|
g = e[j] + V[j][j] * f; |
|
for (k = j + 1; k <= i - 1; k++) { |
|
g += V[k][j] * d[k]; |
|
e[k] += V[k][j] * f; |
|
} |
|
e[j] = g; |
|
} |
|
|
|
f = 0; |
|
for (j = 0; j < i; j++) { |
|
e[j] /= h; |
|
f += e[j] * d[j]; |
|
} |
|
|
|
hh = f / (h + h); |
|
for (j = 0; j < i; j++) { |
|
e[j] -= hh * d[j]; |
|
} |
|
|
|
for (j = 0; j < i; j++) { |
|
f = d[j]; |
|
g = e[j]; |
|
for (k = j; k <= i - 1; k++) { |
|
V[k][j] -= f * e[k] + g * d[k]; |
|
} |
|
d[j] = V[i - 1][j]; |
|
V[i][j] = 0; |
|
} |
|
} |
|
d[i] = h; |
|
} |
|
|
|
for (i = 0; i < n - 1; i++) { |
|
V[n - 1][i] = V[i][i]; |
|
V[i][i] = 1; |
|
h = d[i + 1]; |
|
if (h !== 0) { |
|
for (k = 0; k <= i; k++) { |
|
d[k] = V[k][i + 1] / h; |
|
} |
|
|
|
for (j = 0; j <= i; j++) { |
|
g = 0; |
|
for (k = 0; k <= i; k++) { |
|
g += V[k][i + 1] * V[k][j]; |
|
} |
|
for (k = 0; k <= i; k++) { |
|
V[k][j] -= g * d[k]; |
|
} |
|
} |
|
} |
|
|
|
for (k = 0; k <= i; k++) { |
|
V[k][i + 1] = 0; |
|
} |
|
} |
|
|
|
for (j = 0; j < n; j++) { |
|
d[j] = V[n - 1][j]; |
|
V[n - 1][j] = 0; |
|
} |
|
|
|
V[n - 1][n - 1] = 1; |
|
e[0] = 0; |
|
} |
|
|
|
function tql2(n, e, d, V) { |
|
var g, h, i, j, k, l, m, p, r, dl1, c, c2, c3, el1, s, s2, iter; |
|
|
|
for (i = 1; i < n; i++) { |
|
e[i - 1] = e[i]; |
|
} |
|
|
|
e[n - 1] = 0; |
|
|
|
var f = 0; |
|
var tst1 = 0; |
|
var eps = Number.EPSILON; |
|
|
|
for (l = 0; l < n; l++) { |
|
tst1 = Math.max(tst1, Math.abs(d[l]) + Math.abs(e[l])); |
|
m = l; |
|
while (m < n) { |
|
if (Math.abs(e[m]) <= eps * tst1) { |
|
break; |
|
} |
|
m++; |
|
} |
|
|
|
if (m > l) { |
|
iter = 0; |
|
do { |
|
iter = iter + 1; |
|
|
|
g = d[l]; |
|
p = (d[l + 1] - g) / (2 * e[l]); |
|
r = hypotenuse(p, 1); |
|
if (p < 0) { |
|
r = -r; |
|
} |
|
|
|
d[l] = e[l] / (p + r); |
|
d[l + 1] = e[l] * (p + r); |
|
dl1 = d[l + 1]; |
|
h = g - d[l]; |
|
for (i = l + 2; i < n; i++) { |
|
d[i] -= h; |
|
} |
|
|
|
f = f + h; |
|
|
|
p = d[m]; |
|
c = 1; |
|
c2 = c; |
|
c3 = c; |
|
el1 = e[l + 1]; |
|
s = 0; |
|
s2 = 0; |
|
for (i = m - 1; i >= l; i--) { |
|
c3 = c2; |
|
c2 = c; |
|
s2 = s; |
|
g = c * e[i]; |
|
h = c * p; |
|
r = hypotenuse(p, e[i]); |
|
e[i + 1] = s * r; |
|
s = e[i] / r; |
|
c = p / r; |
|
p = c * d[i] - s * g; |
|
d[i + 1] = h + s * (c * g + s * d[i]); |
|
|
|
for (k = 0; k < n; k++) { |
|
h = V[k][i + 1]; |
|
V[k][i + 1] = s * V[k][i] + c * h; |
|
V[k][i] = c * V[k][i] - s * h; |
|
} |
|
} |
|
|
|
p = -s * s2 * c3 * el1 * e[l] / dl1; |
|
e[l] = s * p; |
|
d[l] = c * p; |
|
} while (Math.abs(e[l]) > eps * tst1); |
|
} |
|
d[l] = d[l] + f; |
|
e[l] = 0; |
|
} |
|
|
|
for (i = 0; i < n - 1; i++) { |
|
k = i; |
|
p = d[i]; |
|
for (j = i + 1; j < n; j++) { |
|
if (d[j] < p) { |
|
k = j; |
|
p = d[j]; |
|
} |
|
} |
|
|
|
if (k !== i) { |
|
d[k] = d[i]; |
|
d[i] = p; |
|
for (j = 0; j < n; j++) { |
|
p = V[j][i]; |
|
V[j][i] = V[j][k]; |
|
V[j][k] = p; |
|
} |
|
} |
|
} |
|
} |
|
|
|
function orthes(n, H, ort, V) { |
|
var low = 0; |
|
var high = n - 1; |
|
var f, g, h, i, j, m; |
|
var scale; |
|
|
|
for (m = low + 1; m <= high - 1; m++) { |
|
scale = 0; |
|
for (i = m; i <= high; i++) { |
|
scale = scale + Math.abs(H[i][m - 1]); |
|
} |
|
|
|
if (scale !== 0) { |
|
h = 0; |
|
for (i = high; i >= m; i--) { |
|
ort[i] = H[i][m - 1] / scale; |
|
h += ort[i] * ort[i]; |
|
} |
|
|
|
g = Math.sqrt(h); |
|
if (ort[m] > 0) { |
|
g = -g; |
|
} |
|
|
|
h = h - ort[m] * g; |
|
ort[m] = ort[m] - g; |
|
|
|
for (j = m; j < n; j++) { |
|
f = 0; |
|
for (i = high; i >= m; i--) { |
|
f += ort[i] * H[i][j]; |
|
} |
|
|
|
f = f / h; |
|
for (i = m; i <= high; i++) { |
|
H[i][j] -= f * ort[i]; |
|
} |
|
} |
|
|
|
for (i = 0; i <= high; i++) { |
|
f = 0; |
|
for (j = high; j >= m; j--) { |
|
f += ort[j] * H[i][j]; |
|
} |
|
|
|
f = f / h; |
|
for (j = m; j <= high; j++) { |
|
H[i][j] -= f * ort[j]; |
|
} |
|
} |
|
|
|
ort[m] = scale * ort[m]; |
|
H[m][m - 1] = scale * g; |
|
} |
|
} |
|
|
|
for (i = 0; i < n; i++) { |
|
for (j = 0; j < n; j++) { |
|
V[i][j] = i === j ? 1 : 0; |
|
} |
|
} |
|
|
|
for (m = high - 1; m >= low + 1; m--) { |
|
if (H[m][m - 1] !== 0) { |
|
for (i = m + 1; i <= high; i++) { |
|
ort[i] = H[i][m - 1]; |
|
} |
|
|
|
for (j = m; j <= high; j++) { |
|
g = 0; |
|
for (i = m; i <= high; i++) { |
|
g += ort[i] * V[i][j]; |
|
} |
|
|
|
g = g / ort[m] / H[m][m - 1]; |
|
for (i = m; i <= high; i++) { |
|
V[i][j] += g * ort[i]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
function hqr2(nn, e, d, V, H) { |
|
var n = nn - 1; |
|
var low = 0; |
|
var high = nn - 1; |
|
var eps = Number.EPSILON; |
|
var exshift = 0; |
|
var norm = 0; |
|
var p = 0; |
|
var q = 0; |
|
var r = 0; |
|
var s = 0; |
|
var z = 0; |
|
var iter = 0; |
|
var i, j, k, l, m, t, w, x, y; |
|
var ra, sa, vr, vi; |
|
var notlast, cdivres; |
|
|
|
for (i = 0; i < nn; i++) { |
|
if (i < low || i > high) { |
|
d[i] = H[i][i]; |
|
e[i] = 0; |
|
} |
|
|
|
for (j = Math.max(i - 1, 0); j < nn; j++) { |
|
norm = norm + Math.abs(H[i][j]); |
|
} |
|
} |
|
|
|
while (n >= low) { |
|
l = n; |
|
while (l > low) { |
|
s = Math.abs(H[l - 1][l - 1]) + Math.abs(H[l][l]); |
|
if (s === 0) { |
|
s = norm; |
|
} |
|
if (Math.abs(H[l][l - 1]) < eps * s) { |
|
break; |
|
} |
|
l--; |
|
} |
|
|
|
if (l === n) { |
|
H[n][n] = H[n][n] + exshift; |
|
d[n] = H[n][n]; |
|
e[n] = 0; |
|
n--; |
|
iter = 0; |
|
} else if (l === n - 1) { |
|
w = H[n][n - 1] * H[n - 1][n]; |
|
p = (H[n - 1][n - 1] - H[n][n]) / 2; |
|
q = p * p + w; |
|
z = Math.sqrt(Math.abs(q)); |
|
H[n][n] = H[n][n] + exshift; |
|
H[n - 1][n - 1] = H[n - 1][n - 1] + exshift; |
|
x = H[n][n]; |
|
|
|
if (q >= 0) { |
|
z = p >= 0 ? p + z : p - z; |
|
d[n - 1] = x + z; |
|
d[n] = d[n - 1]; |
|
if (z !== 0) { |
|
d[n] = x - w / z; |
|
} |
|
e[n - 1] = 0; |
|
e[n] = 0; |
|
x = H[n][n - 1]; |
|
s = Math.abs(x) + Math.abs(z); |
|
p = x / s; |
|
q = z / s; |
|
r = Math.sqrt(p * p + q * q); |
|
p = p / r; |
|
q = q / r; |
|
|
|
for (j = n - 1; j < nn; j++) { |
|
z = H[n - 1][j]; |
|
H[n - 1][j] = q * z + p * H[n][j]; |
|
H[n][j] = q * H[n][j] - p * z; |
|
} |
|
|
|
for (i = 0; i <= n; i++) { |
|
z = H[i][n - 1]; |
|
H[i][n - 1] = q * z + p * H[i][n]; |
|
H[i][n] = q * H[i][n] - p * z; |
|
} |
|
|
|
for (i = low; i <= high; i++) { |
|
z = V[i][n - 1]; |
|
V[i][n - 1] = q * z + p * V[i][n]; |
|
V[i][n] = q * V[i][n] - p * z; |
|
} |
|
} else { |
|
d[n - 1] = x + p; |
|
d[n] = x + p; |
|
e[n - 1] = z; |
|
e[n] = -z; |
|
} |
|
|
|
n = n - 2; |
|
iter = 0; |
|
} else { |
|
x = H[n][n]; |
|
y = 0; |
|
w = 0; |
|
if (l < n) { |
|
y = H[n - 1][n - 1]; |
|
w = H[n][n - 1] * H[n - 1][n]; |
|
} |
|
|
|
if (iter === 10) { |
|
exshift += x; |
|
for (i = low; i <= n; i++) { |
|
H[i][i] -= x; |
|
} |
|
s = Math.abs(H[n][n - 1]) + Math.abs(H[n - 1][n - 2]); |
|
x = y = 0.75 * s; |
|
w = -0.4375 * s * s; |
|
} |
|
|
|
if (iter === 30) { |
|
s = (y - x) / 2; |
|
s = s * s + w; |
|
if (s > 0) { |
|
s = Math.sqrt(s); |
|
if (y < x) { |
|
s = -s; |
|
} |
|
s = x - w / ((y - x) / 2 + s); |
|
for (i = low; i <= n; i++) { |
|
H[i][i] -= s; |
|
} |
|
exshift += s; |
|
x = y = w = 0.964; |
|
} |
|
} |
|
|
|
iter = iter + 1; |
|
|
|
m = n - 2; |
|
while (m >= l) { |
|
z = H[m][m]; |
|
r = x - z; |
|
s = y - z; |
|
p = (r * s - w) / H[m + 1][m] + H[m][m + 1]; |
|
q = H[m + 1][m + 1] - z - r - s; |
|
r = H[m + 2][m + 1]; |
|
s = Math.abs(p) + Math.abs(q) + Math.abs(r); |
|
p = p / s; |
|
q = q / s; |
|
r = r / s; |
|
if (m === l) { |
|
break; |
|
} |
|
if ( |
|
Math.abs(H[m][m - 1]) * (Math.abs(q) + Math.abs(r)) < |
|
eps * |
|
(Math.abs(p) * |
|
(Math.abs(H[m - 1][m - 1]) + |
|
Math.abs(z) + |
|
Math.abs(H[m + 1][m + 1]))) |
|
) { |
|
break; |
|
} |
|
m--; |
|
} |
|
|
|
for (i = m + 2; i <= n; i++) { |
|
H[i][i - 2] = 0; |
|
if (i > m + 2) { |
|
H[i][i - 3] = 0; |
|
} |
|
} |
|
|
|
for (k = m; k <= n - 1; k++) { |
|
notlast = k !== n - 1; |
|
if (k !== m) { |
|
p = H[k][k - 1]; |
|
q = H[k + 1][k - 1]; |
|
r = notlast ? H[k + 2][k - 1] : 0; |
|
x = Math.abs(p) + Math.abs(q) + Math.abs(r); |
|
if (x !== 0) { |
|
p = p / x; |
|
q = q / x; |
|
r = r / x; |
|
} |
|
} |
|
|
|
if (x === 0) { |
|
break; |
|
} |
|
|
|
s = Math.sqrt(p * p + q * q + r * r); |
|
if (p < 0) { |
|
s = -s; |
|
} |
|
|
|
if (s !== 0) { |
|
if (k !== m) { |
|
H[k][k - 1] = -s * x; |
|
} else if (l !== m) { |
|
H[k][k - 1] = -H[k][k - 1]; |
|
} |
|
|
|
p = p + s; |
|
x = p / s; |
|
y = q / s; |
|
z = r / s; |
|
q = q / p; |
|
r = r / p; |
|
|
|
for (j = k; j < nn; j++) { |
|
p = H[k][j] + q * H[k + 1][j]; |
|
if (notlast) { |
|
p = p + r * H[k + 2][j]; |
|
H[k + 2][j] = H[k + 2][j] - p * z; |
|
} |
|
|
|
H[k][j] = H[k][j] - p * x; |
|
H[k + 1][j] = H[k + 1][j] - p * y; |
|
} |
|
|
|
for (i = 0; i <= Math.min(n, k + 3); i++) { |
|
p = x * H[i][k] + y * H[i][k + 1]; |
|
if (notlast) { |
|
p = p + z * H[i][k + 2]; |
|
H[i][k + 2] = H[i][k + 2] - p * r; |
|
} |
|
|
|
H[i][k] = H[i][k] - p; |
|
H[i][k + 1] = H[i][k + 1] - p * q; |
|
} |
|
|
|
for (i = low; i <= high; i++) { |
|
p = x * V[i][k] + y * V[i][k + 1]; |
|
if (notlast) { |
|
p = p + z * V[i][k + 2]; |
|
V[i][k + 2] = V[i][k + 2] - p * r; |
|
} |
|
|
|
V[i][k] = V[i][k] - p; |
|
V[i][k + 1] = V[i][k + 1] - p * q; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (norm === 0) { |
|
return; |
|
} |
|
|
|
for (n = nn - 1; n >= 0; n--) { |
|
p = d[n]; |
|
q = e[n]; |
|
|
|
if (q === 0) { |
|
l = n; |
|
H[n][n] = 1; |
|
for (i = n - 1; i >= 0; i--) { |
|
w = H[i][i] - p; |
|
r = 0; |
|
for (j = l; j <= n; j++) { |
|
r = r + H[i][j] * H[j][n]; |
|
} |
|
|
|
if (e[i] < 0) { |
|
z = w; |
|
s = r; |
|
} else { |
|
l = i; |
|
if (e[i] === 0) { |
|
H[i][n] = w !== 0 ? -r / w : -r / (eps * norm); |
|
} else { |
|
x = H[i][i + 1]; |
|
y = H[i + 1][i]; |
|
q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; |
|
t = (x * s - z * r) / q; |
|
H[i][n] = t; |
|
H[i + 1][n] = |
|
Math.abs(x) > Math.abs(z) ? (-r - w * t) / x : (-s - y * t) / z; |
|
} |
|
|
|
t = Math.abs(H[i][n]); |
|
if (eps * t * t > 1) { |
|
for (j = i; j <= n; j++) { |
|
H[j][n] = H[j][n] / t; |
|
} |
|
} |
|
} |
|
} |
|
} else if (q < 0) { |
|
l = n - 1; |
|
|
|
if (Math.abs(H[n][n - 1]) > Math.abs(H[n - 1][n])) { |
|
H[n - 1][n - 1] = q / H[n][n - 1]; |
|
H[n - 1][n] = -(H[n][n] - p) / H[n][n - 1]; |
|
} else { |
|
cdivres = cdiv(0, -H[n - 1][n], H[n - 1][n - 1] - p, q); |
|
H[n - 1][n - 1] = cdivres[0]; |
|
H[n - 1][n] = cdivres[1]; |
|
} |
|
|
|
H[n][n - 1] = 0; |
|
H[n][n] = 1; |
|
for (i = n - 2; i >= 0; i--) { |
|
ra = 0; |
|
sa = 0; |
|
for (j = l; j <= n; j++) { |
|
ra = ra + H[i][j] * H[j][n - 1]; |
|
sa = sa + H[i][j] * H[j][n]; |
|
} |
|
|
|
w = H[i][i] - p; |
|
|
|
if (e[i] < 0) { |
|
z = w; |
|
r = ra; |
|
s = sa; |
|
} else { |
|
l = i; |
|
if (e[i] === 0) { |
|
cdivres = cdiv(-ra, -sa, w, q); |
|
H[i][n - 1] = cdivres[0]; |
|
H[i][n] = cdivres[1]; |
|
} else { |
|
x = H[i][i + 1]; |
|
y = H[i + 1][i]; |
|
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; |
|
vi = (d[i] - p) * 2 * q; |
|
if (vr === 0 && vi === 0) { |
|
vr = |
|
eps * |
|
norm * |
|
(Math.abs(w) + |
|
Math.abs(q) + |
|
Math.abs(x) + |
|
Math.abs(y) + |
|
Math.abs(z)); |
|
} |
|
cdivres = cdiv( |
|
x * r - z * ra + q * sa, |
|
x * s - z * sa - q * ra, |
|
vr, |
|
vi |
|
); |
|
H[i][n - 1] = cdivres[0]; |
|
H[i][n] = cdivres[1]; |
|
if (Math.abs(x) > Math.abs(z) + Math.abs(q)) { |
|
H[i + 1][n - 1] = (-ra - w * H[i][n - 1] + q * H[i][n]) / x; |
|
H[i + 1][n] = (-sa - w * H[i][n] - q * H[i][n - 1]) / x; |
|
} else { |
|
cdivres = cdiv(-r - y * H[i][n - 1], -s - y * H[i][n], z, q); |
|
H[i + 1][n - 1] = cdivres[0]; |
|
H[i + 1][n] = cdivres[1]; |
|
} |
|
} |
|
|
|
t = Math.max(Math.abs(H[i][n - 1]), Math.abs(H[i][n])); |
|
if (eps * t * t > 1) { |
|
for (j = i; j <= n; j++) { |
|
H[j][n - 1] = H[j][n - 1] / t; |
|
H[j][n] = H[j][n] / t; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
for (i = 0; i < nn; i++) { |
|
if (i < low || i > high) { |
|
for (j = i; j < nn; j++) { |
|
V[i][j] = H[i][j]; |
|
} |
|
} |
|
} |
|
|
|
for (j = nn - 1; j >= low; j--) { |
|
for (i = low; i <= high; i++) { |
|
z = 0; |
|
for (k = low; k <= Math.min(j, high); k++) { |
|
z = z + V[i][k] * H[k][j]; |
|
} |
|
V[i][j] = z; |
|
} |
|
} |
|
} |
|
|
|
function cdiv(xr, xi, yr, yi) { |
|
var r, d; |
|
if (Math.abs(yr) > Math.abs(yi)) { |
|
r = yi / yr; |
|
d = yr + r * yi; |
|
return [(xr + r * xi) / d, (xi - r * xr) / d]; |
|
} else { |
|
r = yr / yi; |
|
d = yi + r * yr; |
|
return [(r * xr + xi) / d, (r * xi - xr) / d]; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class cholesky_CholeskyDecomposition { |
|
constructor(value) { |
|
value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value); |
|
if (!value.isSymmetric()) { |
|
throw new Error('Matrix is not symmetric'); |
|
} |
|
|
|
var a = value; |
|
var dimension = a.rows; |
|
var l = new matrix_Matrix(dimension, dimension); |
|
var positiveDefinite = true; |
|
var i, j, k; |
|
|
|
for (j = 0; j < dimension; j++) { |
|
var Lrowj = l[j]; |
|
var d = 0; |
|
for (k = 0; k < j; k++) { |
|
var Lrowk = l[k]; |
|
var s = 0; |
|
for (i = 0; i < k; i++) { |
|
s += Lrowk[i] * Lrowj[i]; |
|
} |
|
Lrowj[k] = s = (a.get(j, k) - s) / l[k][k]; |
|
d = d + s * s; |
|
} |
|
|
|
d = a.get(j, j) - d; |
|
|
|
positiveDefinite &= d > 0; |
|
l[j][j] = Math.sqrt(Math.max(d, 0)); |
|
for (k = j + 1; k < dimension; k++) { |
|
l[j][k] = 0; |
|
} |
|
} |
|
|
|
if (!positiveDefinite) { |
|
throw new Error('Matrix is not positive definite'); |
|
} |
|
|
|
this.L = l; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
solve(value) { |
|
value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value); |
|
|
|
var l = this.L; |
|
var dimension = l.rows; |
|
|
|
if (value.rows !== dimension) { |
|
throw new Error('Matrix dimensions do not match'); |
|
} |
|
|
|
var count = value.columns; |
|
var B = value.clone(); |
|
var i, j, k; |
|
|
|
for (k = 0; k < dimension; k++) { |
|
for (j = 0; j < count; j++) { |
|
for (i = 0; i < k; i++) { |
|
B[k][j] -= B[i][j] * l[k][i]; |
|
} |
|
B[k][j] /= l[k][k]; |
|
} |
|
} |
|
|
|
for (k = dimension - 1; k >= 0; k--) { |
|
for (j = 0; j < count; j++) { |
|
for (i = k + 1; i < dimension; i++) { |
|
B[k][j] -= B[i][j] * l[i][k]; |
|
} |
|
B[k][j] /= l[k][k]; |
|
} |
|
} |
|
|
|
return B; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
get lowerTriangularMatrix() { |
|
return this.L; |
|
} |
|
} |
|
|
|
|
|
__webpack_require__.d(__webpack_exports__, "default", function() { return matrix_Matrix; }); |
|
__webpack_require__.d(__webpack_exports__, "Matrix", function() { return matrix_Matrix; }); |
|
__webpack_require__.d(__webpack_exports__, "abstractMatrix", function() { return AbstractMatrix; }); |
|
__webpack_require__.d(__webpack_exports__, "wrap", function() { return wrap; }); |
|
__webpack_require__.d(__webpack_exports__, "WrapperMatrix2D", function() { return WrapperMatrix2D_WrapperMatrix2D; }); |
|
__webpack_require__.d(__webpack_exports__, "WrapperMatrix1D", function() { return WrapperMatrix1D_WrapperMatrix1D; }); |
|
__webpack_require__.d(__webpack_exports__, "solve", function() { return solve; }); |
|
__webpack_require__.d(__webpack_exports__, "inverse", function() { return inverse; }); |
|
__webpack_require__.d(__webpack_exports__, "linearDependencies", function() { return linearDependencies; }); |
|
__webpack_require__.d(__webpack_exports__, "SingularValueDecomposition", function() { return svd_SingularValueDecomposition; }); |
|
__webpack_require__.d(__webpack_exports__, "SVD", function() { return svd_SingularValueDecomposition; }); |
|
__webpack_require__.d(__webpack_exports__, "EigenvalueDecomposition", function() { return evd_EigenvalueDecomposition; }); |
|
__webpack_require__.d(__webpack_exports__, "EVD", function() { return evd_EigenvalueDecomposition; }); |
|
__webpack_require__.d(__webpack_exports__, "CholeskyDecomposition", function() { return cholesky_CholeskyDecomposition; }); |
|
__webpack_require__.d(__webpack_exports__, "CHO", function() { return cholesky_CholeskyDecomposition; }); |
|
__webpack_require__.d(__webpack_exports__, "LuDecomposition", function() { return lu_LuDecomposition; }); |
|
__webpack_require__.d(__webpack_exports__, "LU", function() { return lu_LuDecomposition; }); |
|
__webpack_require__.d(__webpack_exports__, "QrDecomposition", function() { return qr_QrDecomposition; }); |
|
__webpack_require__.d(__webpack_exports__, "QR", function() { return qr_QrDecomposition; }); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}) |
|
]); |
|
}); |