Overview

Dataset statistics

Number of variables25
Number of observations30000
Missing cells0
Missing cells (%)0.0%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory5.7 MiB
Average record size in memory200.0 B

Variable types

Numeric22
Categorical3

Alerts

PAY_0 is highly correlated with PAY_2 and 2 other fieldsHigh correlation
PAY_2 is highly correlated with PAY_0 and 7 other fieldsHigh correlation
PAY_3 is highly correlated with PAY_0 and 9 other fieldsHigh correlation
PAY_4 is highly correlated with PAY_0 and 10 other fieldsHigh correlation
PAY_5 is highly correlated with PAY_2 and 8 other fieldsHigh correlation
PAY_6 is highly correlated with PAY_2 and 8 other fieldsHigh correlation
BILL_AMT1 is highly correlated with PAY_2 and 8 other fieldsHigh correlation
BILL_AMT2 is highly correlated with PAY_2 and 10 other fieldsHigh correlation
BILL_AMT3 is highly correlated with PAY_2 and 11 other fieldsHigh correlation
BILL_AMT4 is highly correlated with PAY_3 and 13 other fieldsHigh correlation
BILL_AMT5 is highly correlated with PAY_3 and 13 other fieldsHigh correlation
BILL_AMT6 is highly correlated with PAY_4 and 11 other fieldsHigh correlation
PAY_AMT1 is highly correlated with BILL_AMT1 and 5 other fieldsHigh correlation
PAY_AMT2 is highly correlated with BILL_AMT3 and 5 other fieldsHigh correlation
PAY_AMT3 is highly correlated with BILL_AMT4 and 7 other fieldsHigh correlation
PAY_AMT4 is highly correlated with BILL_AMT4 and 6 other fieldsHigh correlation
PAY_AMT5 is highly correlated with BILL_AMT4 and 5 other fieldsHigh correlation
PAY_AMT6 is highly correlated with BILL_AMT5 and 4 other fieldsHigh correlation
PAY_0 is highly correlated with PAY_2 and 3 other fieldsHigh correlation
PAY_2 is highly correlated with PAY_0 and 4 other fieldsHigh correlation
PAY_3 is highly correlated with PAY_0 and 4 other fieldsHigh correlation
PAY_4 is highly correlated with PAY_0 and 4 other fieldsHigh correlation
PAY_5 is highly correlated with PAY_0 and 4 other fieldsHigh correlation
PAY_6 is highly correlated with PAY_2 and 3 other fieldsHigh correlation
BILL_AMT1 is highly correlated with BILL_AMT2 and 4 other fieldsHigh correlation
BILL_AMT2 is highly correlated with BILL_AMT1 and 4 other fieldsHigh correlation
BILL_AMT3 is highly correlated with BILL_AMT1 and 4 other fieldsHigh correlation
BILL_AMT4 is highly correlated with BILL_AMT1 and 4 other fieldsHigh correlation
BILL_AMT5 is highly correlated with BILL_AMT1 and 4 other fieldsHigh correlation
BILL_AMT6 is highly correlated with BILL_AMT1 and 4 other fieldsHigh correlation
PAY_0 is highly correlated with PAY_2 and 1 other fieldsHigh correlation
PAY_2 is highly correlated with PAY_0 and 4 other fieldsHigh correlation
PAY_3 is highly correlated with PAY_0 and 4 other fieldsHigh correlation
PAY_4 is highly correlated with PAY_2 and 3 other fieldsHigh correlation
PAY_5 is highly correlated with PAY_2 and 4 other fieldsHigh correlation
PAY_6 is highly correlated with PAY_2 and 5 other fieldsHigh correlation
BILL_AMT1 is highly correlated with BILL_AMT2 and 4 other fieldsHigh correlation
BILL_AMT2 is highly correlated with BILL_AMT1 and 5 other fieldsHigh correlation
BILL_AMT3 is highly correlated with BILL_AMT1 and 5 other fieldsHigh correlation
BILL_AMT4 is highly correlated with PAY_5 and 5 other fieldsHigh correlation
BILL_AMT5 is highly correlated with PAY_6 and 6 other fieldsHigh correlation
BILL_AMT6 is highly correlated with PAY_6 and 6 other fieldsHigh correlation
PAY_AMT1 is highly correlated with BILL_AMT2High correlation
PAY_AMT2 is highly correlated with BILL_AMT3High correlation
PAY_AMT4 is highly correlated with BILL_AMT5High correlation
PAY_AMT5 is highly correlated with BILL_AMT6High correlation
LIMIT_BAL is highly correlated with BILL_AMT1 and 5 other fieldsHigh correlation
PAY_0 is highly correlated with PAY_2 and 5 other fieldsHigh correlation
PAY_2 is highly correlated with PAY_0 and 4 other fieldsHigh correlation
PAY_3 is highly correlated with PAY_0 and 4 other fieldsHigh correlation
PAY_4 is highly correlated with PAY_0 and 4 other fieldsHigh correlation
PAY_5 is highly correlated with PAY_0 and 5 other fieldsHigh correlation
PAY_6 is highly correlated with PAY_0 and 5 other fieldsHigh correlation
BILL_AMT1 is highly correlated with LIMIT_BAL and 6 other fieldsHigh correlation
BILL_AMT2 is highly correlated with LIMIT_BAL and 6 other fieldsHigh correlation
BILL_AMT3 is highly correlated with BILL_AMT1 and 6 other fieldsHigh correlation
BILL_AMT4 is highly correlated with LIMIT_BAL and 6 other fieldsHigh correlation
BILL_AMT5 is highly correlated with LIMIT_BAL and 8 other fieldsHigh correlation
BILL_AMT6 is highly correlated with LIMIT_BAL and 6 other fieldsHigh correlation
PAY_AMT1 is highly correlated with PAY_AMT2 and 2 other fieldsHigh correlation
PAY_AMT2 is highly correlated with BILL_AMT3 and 3 other fieldsHigh correlation
PAY_AMT3 is highly correlated with LIMIT_BAL and 8 other fieldsHigh correlation
PAY_AMT4 is highly correlated with PAY_AMT1 and 1 other fieldsHigh correlation
PAY_AMT5 is highly correlated with BILL_AMT3 and 1 other fieldsHigh correlation
default.payment.next.month is highly correlated with PAY_0High correlation
PAY_AMT2 is highly skewed (γ1 = 30.45381745) Skewed
ID is uniformly distributed Uniform
ID has unique values Unique
PAY_0 has 14737 (49.1%) zeros Zeros
PAY_2 has 15730 (52.4%) zeros Zeros
PAY_3 has 15764 (52.5%) zeros Zeros
PAY_4 has 16455 (54.9%) zeros Zeros
PAY_5 has 16947 (56.5%) zeros Zeros
PAY_6 has 16286 (54.3%) zeros Zeros
BILL_AMT1 has 2008 (6.7%) zeros Zeros
BILL_AMT2 has 2506 (8.4%) zeros Zeros
BILL_AMT3 has 2870 (9.6%) zeros Zeros
BILL_AMT4 has 3195 (10.7%) zeros Zeros
BILL_AMT5 has 3506 (11.7%) zeros Zeros
BILL_AMT6 has 4020 (13.4%) zeros Zeros
PAY_AMT1 has 5249 (17.5%) zeros Zeros
PAY_AMT2 has 5396 (18.0%) zeros Zeros
PAY_AMT3 has 5968 (19.9%) zeros Zeros
PAY_AMT4 has 6408 (21.4%) zeros Zeros
PAY_AMT5 has 6703 (22.3%) zeros Zeros
PAY_AMT6 has 7173 (23.9%) zeros Zeros

Reproduction

Analysis started2022-06-21 09:25:01.007508
Analysis finished2022-06-21 09:26:11.165682
Duration1 minute and 10.16 seconds
Software versionpandas-profiling v3.2.0
Download configurationconfig.json

Variables

ID
Real number (ℝ≥0)

UNIFORM
UNIQUE

Distinct30000
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean15000.5
Minimum1
Maximum30000
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:11.236729image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1500.95
Q17500.75
median15000.5
Q322500.25
95-th percentile28500.05
Maximum30000
Range29999
Interquartile range (IQR)14999.5

Descriptive statistics

Standard deviation8660.398374
Coefficient of variation (CV)0.5773406469
Kurtosis-1.2
Mean15000.5
Median Absolute Deviation (MAD)7500
Skewness0
Sum450015000
Variance75002500
MonotonicityStrictly increasing
2022-06-21T09:26:11.375423image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
11
 
< 0.1%
199971
 
< 0.1%
200091
 
< 0.1%
200081
 
< 0.1%
200071
 
< 0.1%
200061
 
< 0.1%
200051
 
< 0.1%
200041
 
< 0.1%
200031
 
< 0.1%
200021
 
< 0.1%
Other values (29990)29990
> 99.9%
ValueCountFrequency (%)
11
< 0.1%
21
< 0.1%
31
< 0.1%
41
< 0.1%
51
< 0.1%
61
< 0.1%
71
< 0.1%
81
< 0.1%
91
< 0.1%
101
< 0.1%
ValueCountFrequency (%)
300001
< 0.1%
299991
< 0.1%
299981
< 0.1%
299971
< 0.1%
299961
< 0.1%
299951
< 0.1%
299941
< 0.1%
299931
< 0.1%
299921
< 0.1%
299911
< 0.1%

LIMIT_BAL
Real number (ℝ≥0)

HIGH CORRELATION

Distinct81
Distinct (%)0.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean167484.3227
Minimum10000
Maximum1000000
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:11.529674image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum10000
5-th percentile20000
Q150000
median140000
Q3240000
95-th percentile430000
Maximum1000000
Range990000
Interquartile range (IQR)190000

Descriptive statistics

Standard deviation129747.6616
Coefficient of variation (CV)0.7746854124
Kurtosis0.5362628964
Mean167484.3227
Median Absolute Deviation (MAD)90000
Skewness0.9928669605
Sum5024529680
Variance1.683445568 × 1010
MonotonicityNot monotonic
2022-06-21T09:26:11.686940image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
500003365
 
11.2%
200001976
 
6.6%
300001610
 
5.4%
800001567
 
5.2%
2000001528
 
5.1%
1500001110
 
3.7%
1000001048
 
3.5%
180000995
 
3.3%
360000881
 
2.9%
60000825
 
2.8%
Other values (71)15095
50.3%
ValueCountFrequency (%)
10000493
 
1.6%
160002
 
< 0.1%
200001976
6.6%
300001610
5.4%
40000230
 
0.8%
500003365
11.2%
60000825
 
2.8%
70000731
 
2.4%
800001567
5.2%
90000651
 
2.2%
ValueCountFrequency (%)
10000001
 
< 0.1%
8000002
 
< 0.1%
7800002
 
< 0.1%
7600001
 
< 0.1%
7500004
< 0.1%
7400002
 
< 0.1%
7300002
 
< 0.1%
7200003
 
< 0.1%
7100006
< 0.1%
7000008
< 0.1%

SEX
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size234.5 KiB
2
18112 
1
11888 

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters30000
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row2
2nd row2
3rd row2
4th row2
5th row1

Common Values

ValueCountFrequency (%)
218112
60.4%
111888
39.6%

Length

2022-06-21T09:26:11.818410image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-06-21T09:26:11.925990image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
218112
60.4%
111888
39.6%

Most occurring characters

ValueCountFrequency (%)
218112
60.4%
111888
39.6%

Most occurring categories

ValueCountFrequency (%)
Decimal Number30000
100.0%

Most frequent character per category

Decimal Number
ValueCountFrequency (%)
218112
60.4%
111888
39.6%

Most occurring scripts

ValueCountFrequency (%)
Common30000
100.0%

Most frequent character per script

Common
ValueCountFrequency (%)
218112
60.4%
111888
39.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII30000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
218112
60.4%
111888
39.6%

EDUCATION
Real number (ℝ≥0)

Distinct7
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1.853133333
Minimum0
Maximum6
Zeros14
Zeros (%)< 0.1%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:12.007798image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q11
median2
Q32
95-th percentile3
Maximum6
Range6
Interquartile range (IQR)1

Descriptive statistics

Standard deviation0.7903486597
Coefficient of variation (CV)0.426493143
Kurtosis2.078621603
Mean1.853133333
Median Absolute Deviation (MAD)1
Skewness0.9709720486
Sum55594
Variance0.6246510039
MonotonicityNot monotonic
2022-06-21T09:26:12.097114image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=7)
ValueCountFrequency (%)
214030
46.8%
110585
35.3%
34917
 
16.4%
5280
 
0.9%
4123
 
0.4%
651
 
0.2%
014
 
< 0.1%
ValueCountFrequency (%)
014
 
< 0.1%
110585
35.3%
214030
46.8%
34917
 
16.4%
4123
 
0.4%
5280
 
0.9%
651
 
0.2%
ValueCountFrequency (%)
651
 
0.2%
5280
 
0.9%
4123
 
0.4%
34917
 
16.4%
214030
46.8%
110585
35.3%
014
 
< 0.1%

MARRIAGE
Categorical

Distinct4
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size234.5 KiB
2
15964 
1
13659 
3
 
323
0
 
54

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters30000
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1
2nd row2
3rd row2
4th row1
5th row1

Common Values

ValueCountFrequency (%)
215964
53.2%
113659
45.5%
3323
 
1.1%
054
 
0.2%

Length

2022-06-21T09:26:12.204207image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-06-21T09:26:12.314535image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
215964
53.2%
113659
45.5%
3323
 
1.1%
054
 
0.2%

Most occurring characters

ValueCountFrequency (%)
215964
53.2%
113659
45.5%
3323
 
1.1%
054
 
0.2%

Most occurring categories

ValueCountFrequency (%)
Decimal Number30000
100.0%

Most frequent character per category

Decimal Number
ValueCountFrequency (%)
215964
53.2%
113659
45.5%
3323
 
1.1%
054
 
0.2%

Most occurring scripts

ValueCountFrequency (%)
Common30000
100.0%

Most frequent character per script

Common
ValueCountFrequency (%)
215964
53.2%
113659
45.5%
3323
 
1.1%
054
 
0.2%

Most occurring blocks

ValueCountFrequency (%)
ASCII30000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
215964
53.2%
113659
45.5%
3323
 
1.1%
054
 
0.2%

AGE
Real number (ℝ≥0)

Distinct56
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean35.4855
Minimum21
Maximum79
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:12.432633image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum21
5-th percentile23
Q128
median34
Q341
95-th percentile53
Maximum79
Range58
Interquartile range (IQR)13

Descriptive statistics

Standard deviation9.217904068
Coefficient of variation (CV)0.2597653709
Kurtosis0.04430337824
Mean35.4855
Median Absolute Deviation (MAD)6
Skewness0.7322458688
Sum1064565
Variance84.96975541
MonotonicityNot monotonic
2022-06-21T09:26:12.571701image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
291605
 
5.3%
271477
 
4.9%
281409
 
4.7%
301395
 
4.7%
261256
 
4.2%
311217
 
4.1%
251186
 
4.0%
341162
 
3.9%
321158
 
3.9%
331146
 
3.8%
Other values (46)16989
56.6%
ValueCountFrequency (%)
2167
 
0.2%
22560
 
1.9%
23931
3.1%
241127
3.8%
251186
4.0%
261256
4.2%
271477
4.9%
281409
4.7%
291605
5.3%
301395
4.7%
ValueCountFrequency (%)
791
 
< 0.1%
753
 
< 0.1%
741
 
< 0.1%
734
 
< 0.1%
723
 
< 0.1%
713
 
< 0.1%
7010
< 0.1%
6915
0.1%
685
 
< 0.1%
6716
0.1%

PAY_0
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct11
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-0.0167
Minimum-2
Maximum8
Zeros14737
Zeros (%)49.1%
Negative8445
Negative (%)28.1%
Memory size234.5 KiB
2022-06-21T09:26:12.696556image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-2
5-th percentile-2
Q1-1
median0
Q30
95-th percentile2
Maximum8
Range10
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.123801528
Coefficient of variation (CV)-67.29350467
Kurtosis2.720715042
Mean-0.0167
Median Absolute Deviation (MAD)1
Skewness0.7319749269
Sum-501
Variance1.262929874
MonotonicityNot monotonic
2022-06-21T09:26:12.798058image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=11)
ValueCountFrequency (%)
014737
49.1%
-15686
 
19.0%
13688
 
12.3%
-22759
 
9.2%
22667
 
8.9%
3322
 
1.1%
476
 
0.3%
526
 
0.1%
819
 
0.1%
611
 
< 0.1%
ValueCountFrequency (%)
-22759
 
9.2%
-15686
 
19.0%
014737
49.1%
13688
 
12.3%
22667
 
8.9%
3322
 
1.1%
476
 
0.3%
526
 
0.1%
611
 
< 0.1%
79
 
< 0.1%
ValueCountFrequency (%)
819
 
0.1%
79
 
< 0.1%
611
 
< 0.1%
526
 
0.1%
476
 
0.3%
3322
 
1.1%
22667
 
8.9%
13688
 
12.3%
014737
49.1%
-15686
 
19.0%

PAY_2
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct11
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-0.1337666667
Minimum-2
Maximum8
Zeros15730
Zeros (%)52.4%
Negative9832
Negative (%)32.8%
Memory size234.5 KiB
2022-06-21T09:26:12.914438image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-2
5-th percentile-2
Q1-1
median0
Q30
95-th percentile2
Maximum8
Range10
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.197185973
Coefficient of variation (CV)-8.949807922
Kurtosis1.57041773
Mean-0.1337666667
Median Absolute Deviation (MAD)0
Skewness0.7905650222
Sum-4013
Variance1.433254254
MonotonicityNot monotonic
2022-06-21T09:26:13.015323image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=11)
ValueCountFrequency (%)
015730
52.4%
-16050
 
20.2%
23927
 
13.1%
-23782
 
12.6%
3326
 
1.1%
499
 
0.3%
128
 
0.1%
525
 
0.1%
720
 
0.1%
612
 
< 0.1%
ValueCountFrequency (%)
-23782
 
12.6%
-16050
 
20.2%
015730
52.4%
128
 
0.1%
23927
 
13.1%
3326
 
1.1%
499
 
0.3%
525
 
0.1%
612
 
< 0.1%
720
 
0.1%
ValueCountFrequency (%)
81
 
< 0.1%
720
 
0.1%
612
 
< 0.1%
525
 
0.1%
499
 
0.3%
3326
 
1.1%
23927
 
13.1%
128
 
0.1%
015730
52.4%
-16050
 
20.2%

PAY_3
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct11
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-0.1662
Minimum-2
Maximum8
Zeros15764
Zeros (%)52.5%
Negative10023
Negative (%)33.4%
Memory size234.5 KiB
2022-06-21T09:26:13.118190image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-2
5-th percentile-2
Q1-1
median0
Q30
95-th percentile2
Maximum8
Range10
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.196867568
Coefficient of variation (CV)-7.201369245
Kurtosis2.084435875
Mean-0.1662
Median Absolute Deviation (MAD)0
Skewness0.8406818269
Sum-4986
Variance1.432491976
MonotonicityNot monotonic
2022-06-21T09:26:13.222194image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=11)
ValueCountFrequency (%)
015764
52.5%
-15938
 
19.8%
-24085
 
13.6%
23819
 
12.7%
3240
 
0.8%
476
 
0.3%
727
 
0.1%
623
 
0.1%
521
 
0.1%
14
 
< 0.1%
ValueCountFrequency (%)
-24085
 
13.6%
-15938
 
19.8%
015764
52.5%
14
 
< 0.1%
23819
 
12.7%
3240
 
0.8%
476
 
0.3%
521
 
0.1%
623
 
0.1%
727
 
0.1%
ValueCountFrequency (%)
83
 
< 0.1%
727
 
0.1%
623
 
0.1%
521
 
0.1%
476
 
0.3%
3240
 
0.8%
23819
 
12.7%
14
 
< 0.1%
015764
52.5%
-15938
 
19.8%

PAY_4
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct11
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-0.2206666667
Minimum-2
Maximum8
Zeros16455
Zeros (%)54.9%
Negative10035
Negative (%)33.5%
Memory size234.5 KiB
2022-06-21T09:26:13.327753image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-2
5-th percentile-2
Q1-1
median0
Q30
95-th percentile2
Maximum8
Range10
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.169138622
Coefficient of variation (CV)-5.29821128
Kurtosis3.496983496
Mean-0.2206666667
Median Absolute Deviation (MAD)0
Skewness0.9996294133
Sum-6620
Variance1.366885118
MonotonicityNot monotonic
2022-06-21T09:26:13.430707image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=11)
ValueCountFrequency (%)
016455
54.9%
-15687
 
19.0%
-24348
 
14.5%
23159
 
10.5%
3180
 
0.6%
469
 
0.2%
758
 
0.2%
535
 
0.1%
65
 
< 0.1%
12
 
< 0.1%
ValueCountFrequency (%)
-24348
 
14.5%
-15687
 
19.0%
016455
54.9%
12
 
< 0.1%
23159
 
10.5%
3180
 
0.6%
469
 
0.2%
535
 
0.1%
65
 
< 0.1%
758
 
0.2%
ValueCountFrequency (%)
82
 
< 0.1%
758
 
0.2%
65
 
< 0.1%
535
 
0.1%
469
 
0.2%
3180
 
0.6%
23159
 
10.5%
12
 
< 0.1%
016455
54.9%
-15687
 
19.0%

PAY_5
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct10
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-0.2662
Minimum-2
Maximum8
Zeros16947
Zeros (%)56.5%
Negative10085
Negative (%)33.6%
Memory size234.5 KiB
2022-06-21T09:26:13.535531image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-2
5-th percentile-2
Q1-1
median0
Q30
95-th percentile2
Maximum8
Range10
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.133187406
Coefficient of variation (CV)-4.256902352
Kurtosis3.989748144
Mean-0.2662
Median Absolute Deviation (MAD)0
Skewness1.008197025
Sum-7986
Variance1.284113697
MonotonicityNot monotonic
2022-06-21T09:26:13.798651image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%)
016947
56.5%
-15539
 
18.5%
-24546
 
15.2%
22626
 
8.8%
3178
 
0.6%
484
 
0.3%
758
 
0.2%
517
 
0.1%
64
 
< 0.1%
81
 
< 0.1%
ValueCountFrequency (%)
-24546
 
15.2%
-15539
 
18.5%
016947
56.5%
22626
 
8.8%
3178
 
0.6%
484
 
0.3%
517
 
0.1%
64
 
< 0.1%
758
 
0.2%
81
 
< 0.1%
ValueCountFrequency (%)
81
 
< 0.1%
758
 
0.2%
64
 
< 0.1%
517
 
0.1%
484
 
0.3%
3178
 
0.6%
22626
 
8.8%
016947
56.5%
-15539
 
18.5%
-24546
 
15.2%

PAY_6
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct10
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-0.2911
Minimum-2
Maximum8
Zeros16286
Zeros (%)54.3%
Negative10635
Negative (%)35.4%
Memory size234.5 KiB
2022-06-21T09:26:13.900390image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-2
5-th percentile-2
Q1-1
median0
Q30
95-th percentile2
Maximum8
Range10
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.149987626
Coefficient of variation (CV)-3.950489954
Kurtosis3.42653413
Mean-0.2911
Median Absolute Deviation (MAD)0
Skewness0.9480293916
Sum-8733
Variance1.322471539
MonotonicityNot monotonic
2022-06-21T09:26:14.001229image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%)
016286
54.3%
-15740
 
19.1%
-24895
 
16.3%
22766
 
9.2%
3184
 
0.6%
449
 
0.2%
746
 
0.2%
619
 
0.1%
513
 
< 0.1%
82
 
< 0.1%
ValueCountFrequency (%)
-24895
 
16.3%
-15740
 
19.1%
016286
54.3%
22766
 
9.2%
3184
 
0.6%
449
 
0.2%
513
 
< 0.1%
619
 
0.1%
746
 
0.2%
82
 
< 0.1%
ValueCountFrequency (%)
82
 
< 0.1%
746
 
0.2%
619
 
0.1%
513
 
< 0.1%
449
 
0.2%
3184
 
0.6%
22766
 
9.2%
016286
54.3%
-15740
 
19.1%
-24895
 
16.3%

BILL_AMT1
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct22723
Distinct (%)75.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean51223.3309
Minimum-165580
Maximum964511
Zeros2008
Zeros (%)6.7%
Negative590
Negative (%)2.0%
Memory size234.5 KiB
2022-06-21T09:26:14.137964image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-165580
5-th percentile0
Q13558.75
median22381.5
Q367091
95-th percentile201203.05
Maximum964511
Range1130091
Interquartile range (IQR)63532.25

Descriptive statistics

Standard deviation73635.86058
Coefficient of variation (CV)1.437545339
Kurtosis9.806289341
Mean51223.3309
Median Absolute Deviation (MAD)21800.5
Skewness2.663861022
Sum1536699927
Variance5422239963
MonotonicityNot monotonic
2022-06-21T09:26:14.283383image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
02008
 
6.7%
390244
 
0.8%
78076
 
0.3%
32672
 
0.2%
31663
 
0.2%
250059
 
0.2%
39649
 
0.2%
240039
 
0.1%
41629
 
0.1%
50025
 
0.1%
Other values (22713)27336
91.1%
ValueCountFrequency (%)
-1655801
< 0.1%
-1549731
< 0.1%
-153081
< 0.1%
-143861
< 0.1%
-115451
< 0.1%
-106821
< 0.1%
-98021
< 0.1%
-90951
< 0.1%
-81871
< 0.1%
-74381
< 0.1%
ValueCountFrequency (%)
9645111
< 0.1%
7468141
< 0.1%
6530621
< 0.1%
6304581
< 0.1%
6266481
< 0.1%
6217491
< 0.1%
6138601
< 0.1%
6107231
< 0.1%
6085941
< 0.1%
6040191
< 0.1%

BILL_AMT2
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct22346
Distinct (%)74.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean49179.07517
Minimum-69777
Maximum983931
Zeros2506
Zeros (%)8.4%
Negative669
Negative (%)2.2%
Memory size234.5 KiB
2022-06-21T09:26:14.438737image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-69777
5-th percentile0
Q12984.75
median21200
Q364006.25
95-th percentile194792.2
Maximum983931
Range1053708
Interquartile range (IQR)61021.5

Descriptive statistics

Standard deviation71173.76878
Coefficient of variation (CV)1.447236829
Kurtosis10.30294592
Mean49179.07517
Median Absolute Deviation (MAD)20810
Skewness2.705220853
Sum1475372255
Variance5065705363
MonotonicityNot monotonic
2022-06-21T09:26:14.587997image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
02506
 
8.4%
390231
 
0.8%
32675
 
0.2%
78075
 
0.2%
31672
 
0.2%
39651
 
0.2%
250051
 
0.2%
240042
 
0.1%
-20029
 
0.1%
41628
 
0.1%
Other values (22336)26840
89.5%
ValueCountFrequency (%)
-697771
< 0.1%
-675261
< 0.1%
-333501
< 0.1%
-300001
< 0.1%
-262141
< 0.1%
-247041
< 0.1%
-247021
< 0.1%
-229601
< 0.1%
-186181
< 0.1%
-180881
< 0.1%
ValueCountFrequency (%)
9839311
< 0.1%
7439701
< 0.1%
6715631
< 0.1%
6467701
< 0.1%
6244751
< 0.1%
6059431
< 0.1%
5977931
< 0.1%
5868251
< 0.1%
5817751
< 0.1%
5776811
< 0.1%

BILL_AMT3
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct22026
Distinct (%)73.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean47013.1548
Minimum-157264
Maximum1664089
Zeros2870
Zeros (%)9.6%
Negative655
Negative (%)2.2%
Memory size234.5 KiB
2022-06-21T09:26:14.737002image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-157264
5-th percentile0
Q12666.25
median20088.5
Q360164.75
95-th percentile187821.05
Maximum1664089
Range1821353
Interquartile range (IQR)57498.5

Descriptive statistics

Standard deviation69349.38743
Coefficient of variation (CV)1.475106015
Kurtosis19.78325514
Mean47013.1548
Median Absolute Deviation (MAD)19708.5
Skewness3.087830046
Sum1410394644
Variance4809337537
MonotonicityNot monotonic
2022-06-21T09:26:14.883396image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
02870
 
9.6%
390275
 
0.9%
78074
 
0.2%
32663
 
0.2%
31662
 
0.2%
39648
 
0.2%
250040
 
0.1%
240039
 
0.1%
41629
 
0.1%
20027
 
0.1%
Other values (22016)26473
88.2%
ValueCountFrequency (%)
-1572641
< 0.1%
-615061
< 0.1%
-461271
< 0.1%
-340411
< 0.1%
-254431
< 0.1%
-247021
< 0.1%
-203201
< 0.1%
-177061
< 0.1%
-159101
< 0.1%
-156411
< 0.1%
ValueCountFrequency (%)
16640891
< 0.1%
8550861
< 0.1%
6931311
< 0.1%
6896431
< 0.1%
6896271
< 0.1%
6320411
< 0.1%
5974151
< 0.1%
5789711
< 0.1%
5779571
< 0.1%
5770151
< 0.1%

BILL_AMT4
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct21548
Distinct (%)71.8%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean43262.94897
Minimum-170000
Maximum891586
Zeros3195
Zeros (%)10.7%
Negative675
Negative (%)2.2%
Memory size234.5 KiB
2022-06-21T09:26:15.039557image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-170000
5-th percentile0
Q12326.75
median19052
Q354506
95-th percentile174333.35
Maximum891586
Range1061586
Interquartile range (IQR)52179.25

Descriptive statistics

Standard deviation64332.85613
Coefficient of variation (CV)1.487019671
Kurtosis11.30932483
Mean43262.94897
Median Absolute Deviation (MAD)18656
Skewness2.821965291
Sum1297888469
Variance4138716378
MonotonicityNot monotonic
2022-06-21T09:26:15.187404image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
03195
 
10.7%
390246
 
0.8%
780101
 
0.3%
31668
 
0.2%
32662
 
0.2%
39644
 
0.1%
240039
 
0.1%
15039
 
0.1%
250034
 
0.1%
41633
 
0.1%
Other values (21538)26139
87.1%
ValueCountFrequency (%)
-1700001
< 0.1%
-813341
< 0.1%
-651671
< 0.1%
-506161
< 0.1%
-466271
< 0.1%
-345031
< 0.1%
-274901
< 0.1%
-243031
< 0.1%
-221081
< 0.1%
-203201
< 0.1%
ValueCountFrequency (%)
8915861
< 0.1%
7068641
< 0.1%
6286991
< 0.1%
6168361
< 0.1%
5728051
< 0.1%
5690341
< 0.1%
5656691
< 0.1%
5635431
< 0.1%
5480201
< 0.1%
5426531
< 0.1%

BILL_AMT5
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct21010
Distinct (%)70.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean40311.40097
Minimum-81334
Maximum927171
Zeros3506
Zeros (%)11.7%
Negative655
Negative (%)2.2%
Memory size234.5 KiB
2022-06-21T09:26:15.336993image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-81334
5-th percentile0
Q11763
median18104.5
Q350190.5
95-th percentile165794.3
Maximum927171
Range1008505
Interquartile range (IQR)48427.5

Descriptive statistics

Standard deviation60797.15577
Coefficient of variation (CV)1.508187617
Kurtosis12.30588129
Mean40311.40097
Median Absolute Deviation (MAD)17688.5
Skewness2.876379867
Sum1209342029
Variance3696294150
MonotonicityNot monotonic
2022-06-21T09:26:15.488969image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
03506
 
11.7%
390235
 
0.8%
78094
 
0.3%
31679
 
0.3%
32662
 
0.2%
15058
 
0.2%
39647
 
0.2%
240039
 
0.1%
250037
 
0.1%
41636
 
0.1%
Other values (21000)25807
86.0%
ValueCountFrequency (%)
-813341
< 0.1%
-613721
< 0.1%
-530071
< 0.1%
-466271
< 0.1%
-375941
< 0.1%
-361561
< 0.1%
-304811
< 0.1%
-283351
< 0.1%
-230031
< 0.1%
-207531
< 0.1%
ValueCountFrequency (%)
9271711
< 0.1%
8235401
< 0.1%
5870671
< 0.1%
5517021
< 0.1%
5478801
< 0.1%
5306721
< 0.1%
5243151
< 0.1%
5161391
< 0.1%
5141141
< 0.1%
5082131
< 0.1%

BILL_AMT6
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct20604
Distinct (%)68.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean38871.7604
Minimum-339603
Maximum961664
Zeros4020
Zeros (%)13.4%
Negative688
Negative (%)2.3%
Memory size234.5 KiB
2022-06-21T09:26:15.635284image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-339603
5-th percentile0
Q11256
median17071
Q349198.25
95-th percentile161912
Maximum961664
Range1301267
Interquartile range (IQR)47942.25

Descriptive statistics

Standard deviation59554.10754
Coefficient of variation (CV)1.53206613
Kurtosis12.27070529
Mean38871.7604
Median Absolute Deviation (MAD)16755
Skewness2.846644576
Sum1166152812
Variance3546691724
MonotonicityNot monotonic
2022-06-21T09:26:15.789760image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
04020
 
13.4%
390207
 
0.7%
78086
 
0.3%
15078
 
0.3%
31677
 
0.3%
32656
 
0.2%
39645
 
0.1%
41636
 
0.1%
-1833
 
0.1%
240032
 
0.1%
Other values (20594)25330
84.4%
ValueCountFrequency (%)
-3396031
< 0.1%
-2090511
< 0.1%
-1509531
< 0.1%
-946251
< 0.1%
-738951
< 0.1%
-570601
< 0.1%
-514431
< 0.1%
-511831
< 0.1%
-466271
< 0.1%
-457341
< 0.1%
ValueCountFrequency (%)
9616641
< 0.1%
6999441
< 0.1%
5686381
< 0.1%
5277111
< 0.1%
5275661
< 0.1%
5149751
< 0.1%
5137981
< 0.1%
5119051
< 0.1%
5013701
< 0.1%
4991001
< 0.1%

PAY_AMT1
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct7943
Distinct (%)26.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean5663.5805
Minimum0
Maximum873552
Zeros5249
Zeros (%)17.5%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:15.946436image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q11000
median2100
Q35006
95-th percentile18428.2
Maximum873552
Range873552
Interquartile range (IQR)4006

Descriptive statistics

Standard deviation16563.28035
Coefficient of variation (CV)2.924524575
Kurtosis415.2547427
Mean5663.5805
Median Absolute Deviation (MAD)1932
Skewness14.66836433
Sum169907415
Variance274342256.1
MonotonicityNot monotonic
2022-06-21T09:26:16.090032image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
05249
 
17.5%
20001363
 
4.5%
3000891
 
3.0%
5000698
 
2.3%
1500507
 
1.7%
4000426
 
1.4%
10000401
 
1.3%
1000365
 
1.2%
2500298
 
1.0%
6000294
 
1.0%
Other values (7933)19508
65.0%
ValueCountFrequency (%)
05249
17.5%
19
 
< 0.1%
214
 
< 0.1%
315
 
0.1%
418
 
0.1%
512
 
< 0.1%
615
 
0.1%
79
 
< 0.1%
88
 
< 0.1%
97
 
< 0.1%
ValueCountFrequency (%)
8735521
< 0.1%
5050001
< 0.1%
4933581
< 0.1%
4239031
< 0.1%
4050161
< 0.1%
3681991
< 0.1%
3230141
< 0.1%
3048151
< 0.1%
3020001
< 0.1%
3000391
< 0.1%

PAY_AMT2
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
SKEWED
ZEROS

Distinct7899
Distinct (%)26.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean5921.1635
Minimum0
Maximum1684259
Zeros5396
Zeros (%)18.0%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:16.234473image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q1833
median2009
Q35000
95-th percentile19004.35
Maximum1684259
Range1684259
Interquartile range (IQR)4167

Descriptive statistics

Standard deviation23040.8704
Coefficient of variation (CV)3.891274139
Kurtosis1641.631911
Mean5921.1635
Median Absolute Deviation (MAD)1991
Skewness30.45381745
Sum177634905
Variance530881708.9
MonotonicityNot monotonic
2022-06-21T09:26:16.541905image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
05396
 
18.0%
20001290
 
4.3%
3000857
 
2.9%
5000717
 
2.4%
1000594
 
2.0%
1500521
 
1.7%
4000410
 
1.4%
10000318
 
1.1%
6000283
 
0.9%
2500251
 
0.8%
Other values (7889)19363
64.5%
ValueCountFrequency (%)
05396
18.0%
115
 
0.1%
220
 
0.1%
318
 
0.1%
411
 
< 0.1%
525
 
0.1%
68
 
< 0.1%
712
 
< 0.1%
89
 
< 0.1%
96
 
< 0.1%
ValueCountFrequency (%)
16842591
< 0.1%
12270821
< 0.1%
12154711
< 0.1%
10245161
< 0.1%
5804641
< 0.1%
4155521
< 0.1%
4010031
< 0.1%
3881261
< 0.1%
3852281
< 0.1%
3849861
< 0.1%

PAY_AMT3
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct7518
Distinct (%)25.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean5225.6815
Minimum0
Maximum896040
Zeros5968
Zeros (%)19.9%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:16.701541image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q1390
median1800
Q34505
95-th percentile17589.4
Maximum896040
Range896040
Interquartile range (IQR)4115

Descriptive statistics

Standard deviation17606.96147
Coefficient of variation (CV)3.36931393
Kurtosis564.3112295
Mean5225.6815
Median Absolute Deviation (MAD)1795
Skewness17.21663544
Sum156770445
Variance310005092.2
MonotonicityNot monotonic
2022-06-21T09:26:16.837592image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
05968
 
19.9%
20001285
 
4.3%
10001103
 
3.7%
3000870
 
2.9%
5000721
 
2.4%
1500490
 
1.6%
4000381
 
1.3%
10000312
 
1.0%
1200243
 
0.8%
6000241
 
0.8%
Other values (7508)18386
61.3%
ValueCountFrequency (%)
05968
19.9%
113
 
< 0.1%
219
 
0.1%
314
 
< 0.1%
415
 
0.1%
518
 
0.1%
614
 
< 0.1%
718
 
0.1%
810
 
< 0.1%
912
 
< 0.1%
ValueCountFrequency (%)
8960401
< 0.1%
8890431
< 0.1%
5082291
< 0.1%
4175881
< 0.1%
4009721
< 0.1%
3970921
< 0.1%
3804781
< 0.1%
3717181
< 0.1%
3493951
< 0.1%
3442611
< 0.1%

PAY_AMT4
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct6937
Distinct (%)23.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean4826.076867
Minimum0
Maximum621000
Zeros6408
Zeros (%)21.4%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:16.979132image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q1296
median1500
Q34013.25
95-th percentile16014.95
Maximum621000
Range621000
Interquartile range (IQR)3717.25

Descriptive statistics

Standard deviation15666.15974
Coefficient of variation (CV)3.246147995
Kurtosis277.3337677
Mean4826.076867
Median Absolute Deviation (MAD)1500
Skewness12.90498482
Sum144782306
Variance245428561.1
MonotonicityNot monotonic
2022-06-21T09:26:17.115800image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
06408
 
21.4%
10001394
 
4.6%
20001214
 
4.0%
3000887
 
3.0%
5000810
 
2.7%
1500441
 
1.5%
4000402
 
1.3%
10000341
 
1.1%
2500259
 
0.9%
500258
 
0.9%
Other values (6927)17586
58.6%
ValueCountFrequency (%)
06408
21.4%
122
 
0.1%
222
 
0.1%
313
 
< 0.1%
420
 
0.1%
512
 
< 0.1%
616
 
0.1%
711
 
< 0.1%
87
 
< 0.1%
99
 
< 0.1%
ValueCountFrequency (%)
6210001
< 0.1%
5288971
< 0.1%
4970001
< 0.1%
4321301
< 0.1%
4000461
< 0.1%
3317881
< 0.1%
3309821
< 0.1%
3200081
< 0.1%
3130941
< 0.1%
2929621
< 0.1%

PAY_AMT5
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct6897
Distinct (%)23.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean4799.387633
Minimum0
Maximum426529
Zeros6703
Zeros (%)22.3%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:17.267868image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q1252.5
median1500
Q34031.5
95-th percentile16000
Maximum426529
Range426529
Interquartile range (IQR)3779

Descriptive statistics

Standard deviation15278.30568
Coefficient of variation (CV)3.183386475
Kurtosis180.0639402
Mean4799.387633
Median Absolute Deviation (MAD)1500
Skewness11.12741705
Sum143981629
Variance233426624.4
MonotonicityNot monotonic
2022-06-21T09:26:17.405146image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
06703
 
22.3%
10001340
 
4.5%
20001323
 
4.4%
3000947
 
3.2%
5000814
 
2.7%
1500426
 
1.4%
4000401
 
1.3%
10000343
 
1.1%
500250
 
0.8%
6000247
 
0.8%
Other values (6887)17206
57.4%
ValueCountFrequency (%)
06703
22.3%
121
 
0.1%
213
 
< 0.1%
313
 
< 0.1%
412
 
< 0.1%
59
 
< 0.1%
67
 
< 0.1%
79
 
< 0.1%
86
 
< 0.1%
96
 
< 0.1%
ValueCountFrequency (%)
4265291
< 0.1%
4179901
< 0.1%
3880711
< 0.1%
3792671
< 0.1%
3320001
< 0.1%
3317881
< 0.1%
3309821
< 0.1%
3268891
< 0.1%
3170771
< 0.1%
3101351
< 0.1%

PAY_AMT6
Real number (ℝ≥0)

HIGH CORRELATION
ZEROS

Distinct6939
Distinct (%)23.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean5215.502567
Minimum0
Maximum528666
Zeros7173
Zeros (%)23.9%
Negative0
Negative (%)0.0%
Memory size234.5 KiB
2022-06-21T09:26:17.553661image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q1117.75
median1500
Q34000
95-th percentile17343.8
Maximum528666
Range528666
Interquartile range (IQR)3882.25

Descriptive statistics

Standard deviation17777.46578
Coefficient of variation (CV)3.408581541
Kurtosis167.1614296
Mean5215.502567
Median Absolute Deviation (MAD)1500
Skewness10.64072733
Sum156465077
Variance316038289.4
MonotonicityNot monotonic
2022-06-21T09:26:17.703741image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
07173
23.9%
10001299
 
4.3%
20001295
 
4.3%
3000914
 
3.0%
5000808
 
2.7%
1500439
 
1.5%
4000411
 
1.4%
10000356
 
1.2%
500247
 
0.8%
6000220
 
0.7%
Other values (6929)16838
56.1%
ValueCountFrequency (%)
07173
23.9%
120
 
0.1%
29
 
< 0.1%
314
 
< 0.1%
412
 
< 0.1%
57
 
< 0.1%
66
 
< 0.1%
75
 
< 0.1%
86
 
< 0.1%
97
 
< 0.1%
ValueCountFrequency (%)
5286661
< 0.1%
5271431
< 0.1%
4430011
< 0.1%
4220001
< 0.1%
4035001
< 0.1%
3770001
< 0.1%
3724951
< 0.1%
3512821
< 0.1%
3452931
< 0.1%
3080001
< 0.1%

default.payment.next.month
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size234.5 KiB
0
23364 
1
6636 

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters30000
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1
2nd row1
3rd row0
4th row0
5th row0

Common Values

ValueCountFrequency (%)
023364
77.9%
16636
 
22.1%

Length

2022-06-21T09:26:17.833230image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-06-21T09:26:17.938452image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
023364
77.9%
16636
 
22.1%

Most occurring characters

ValueCountFrequency (%)
023364
77.9%
16636
 
22.1%

Most occurring categories

ValueCountFrequency (%)
Decimal Number30000
100.0%

Most frequent character per category

Decimal Number
ValueCountFrequency (%)
023364
77.9%
16636
 
22.1%

Most occurring scripts

ValueCountFrequency (%)
Common30000
100.0%

Most frequent character per script

Common
ValueCountFrequency (%)
023364
77.9%
16636
 
22.1%

Most occurring blocks

ValueCountFrequency (%)
ASCII30000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
023364
77.9%
16636
 
22.1%

Interactions

2022-06-21T09:26:07.347693image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:06.731872image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:09.534007image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:12.513882image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:15.410782image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:18.299545image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:20.975665image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:23.770720image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:26.566182image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:29.365650image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:32.074112image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:34.894399image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:37.897933image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:40.802749image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:43.788272image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:46.511658image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:49.360633image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:52.384558image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:55.180177image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:57.998044image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:00.798108image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:03.718098image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:07.468737image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:06.909573image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:09.663946image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:12.637075image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:15.534063image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:18.420400image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:21.097632image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:23.890753image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:26.685750image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:29.490172image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:32.196196image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:35.020851image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:38.021284image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:40.930446image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:43.912113image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:46.632142image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:49.496024image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:52.504417image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:55.308305image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:58.118390image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:00.929284image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:03.837926image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:07.593421image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:07.034182image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:09.794224image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:12.760589image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:15.657365image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:18.544404image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:21.217575image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:24.009367image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:26.805331image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:29.615540image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:32.317522image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:35.147961image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:38.168111image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:41.057894image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:44.034216image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:46.754430image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:49.629312image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:52.622581image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:55.441969image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:58.239052image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:01.057344image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:04.003726image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:07.727125image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:07.161257image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:09.923249image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:12.883759image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:15.788613image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:18.671794image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:21.339230image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:24.129079image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:26.924961image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:29.739917image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:32.601844image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:35.277297image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:38.291485image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:41.185428image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:44.161828image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:46.881354image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:49.758095image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:52.740939image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:55.569968image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:58.382148image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:01.181191image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:04.216649image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:07.851469image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:07.294166image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:10.052923image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:13.007873image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:15.912543image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:18.797228image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:21.626214image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:24.250737image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:27.044453image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:29.860469image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:32.722165image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:35.404410image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:38.413631image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:41.313031image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:44.284901image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:47.005368image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:49.887722image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:52.860701image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:55.697632image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:58.500388image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:01.304453image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:04.431404image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:07.972164image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:07.415878image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:10.178204image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:13.127261image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:16.039226image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:18.920859image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:21.741204image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:24.370143image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:27.162607image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:29.976491image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:32.845314image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:35.530993image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:38.532087image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:41.439923image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:44.404193image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:47.122501image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:50.010969image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:52.975659image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:55.826072image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:58.780855image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:01.424542image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:04.641846image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:08.092444image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:07.538352image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:10.506303image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:13.251907image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:16.157954image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:19.041991image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:21.859273image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:24.488952image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:27.285061image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:30.092176image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:32.964108image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:35.654297image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:38.650820image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:41.565845image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:44.525756image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:47.240584image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:50.134671image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:53.089937image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:55.949194image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:58.895491image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:01.585518image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:04.856667image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:08.212286image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:07.659527image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:10.629545image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:13.372053image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:16.276608image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:19.162501image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:21.977441image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:24.605740image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:27.407841image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:30.207796image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:33.082426image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:35.777022image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:38.771022image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:41.688875image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:44.644580image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:47.535060image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:50.258142image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:53.204613image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:56.074210image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:59.009324image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:01.704303image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:05.072160image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:08.329411image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:07.781281image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:10.758068image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:13.492411image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:16.395430image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:19.282348image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:22.092630image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:24.723950image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:27.525331image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:30.325490image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:33.200263image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:35.899947image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:38.889355image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:41.813030image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:44.765116image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:47.652270image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:50.382573image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:53.324523image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:56.198281image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:59.123472image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:01.823849image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:05.246156image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:08.446409image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:07.902709image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:10.878218image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:13.632965image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:16.515151image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:19.405350image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:22.208540image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:24.840253image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:27.641317image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:30.441734image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:33.320101image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:36.022684image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:39.010394image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:41.936645image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:44.885716image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:47.767833image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:50.510062image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:53.438949image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:56.321658image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:59.237778image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:01.942460image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:05.374871image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:08.563986image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:08.023606image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:10.997920image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:13.752547image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:16.634474image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:19.530852image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:22.323744image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:24.956933image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:27.756607image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:30.557787image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:33.436701image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:36.343359image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:39.128801image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:42.061094image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:45.005341image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:47.884465image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:50.640283image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:53.553768image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:56.445702image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:59.352531image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:02.062291image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:05.553138image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:08.687579image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:08.153189image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:11.125650image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:13.879760image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:16.759982image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:19.655367image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:22.447091image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:25.241985image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:27.879893image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:30.689277image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:33.562075image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:36.473849image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:39.254311image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:42.191286image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:45.131339image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:48.008911image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:50.772754image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:53.675407image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:56.576351image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:59.474278image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:02.194772image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:05.701197image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:08.808823image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:08.282323image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:11.248531image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:14.002293image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:16.883583image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:19.774479image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:22.566284image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:25.360821image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:28.000415image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:30.812973image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:33.681829image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:36.599038image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:39.376069image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:42.318082image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:45.253962image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:48.128625image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:50.903442image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:53.794678image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:56.703976image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:59.593071image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:02.479708image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:05.847771image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:08.936099image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:08.414079image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:11.377692image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:14.298617image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:17.015667image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:19.900802image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:22.692530image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:25.494534image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:28.126761image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:30.970796image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:33.812675image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:36.730779image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:39.507388image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:42.456225image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:45.384962image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:48.262702image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:51.038919image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:53.920805image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:56.838819image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:59.722997image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:02.609696image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:05.991048image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:09.058368image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:08.536740image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:11.530221image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:14.422795image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:17.135719image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:20.018042image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:22.810133image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:25.611795image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:28.245780image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:31.090638image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:33.936129image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:36.855447image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:39.629213image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:42.582515image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:45.512597image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:48.379983image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:51.333022image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:54.040653image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:56.964347image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:59.841390image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:02.731002image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:06.136192image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:09.177516image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:08.657229image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:11.649377image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:14.542792image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:17.264514image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:20.133173image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:22.924200image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:25.725549image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:28.359853image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:31.206068image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:34.051932image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:36.974674image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:39.747903image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:42.705332image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:45.636208image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:48.494403image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:51.458966image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:54.154126image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:57.089453image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:59.956501image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:02.848809image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:06.267353image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:09.304494image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:08.789502image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:11.778370image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:14.674726image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:17.396970image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:20.259567image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:23.050400image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:25.852069image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:28.489610image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:31.333692image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:34.178543image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:37.106462image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:40.041377image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:42.845037image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:45.768062image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:48.620940image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:51.600904image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:54.279395image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:57.224724image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:00.084359image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:02.979321image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:06.435959image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:09.418852image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:08.907881image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:11.894332image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:14.807573image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:17.513981image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:20.372559image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:23.163272image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:25.970408image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:28.604411image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:31.448824image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:34.294091image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:37.226713image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:40.158732image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:42.971546image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:45.889457image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:48.735759image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:51.722069image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:54.392171image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:57.353311image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:00.199498image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:03.096602image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:06.597715image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:09.546654image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:09.039453image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:12.029228image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:14.935907image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:17.643523image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:20.505095image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:23.300044image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:26.097310image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:28.899640image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:31.576774image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:34.421961image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:37.375005image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:40.295583image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:43.107733image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:46.024671image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:48.892905image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:51.856519image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:54.546405image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:57.489715image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:00.327709image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:03.225825image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:06.722961image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:09.666825image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:09.158171image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:12.147398image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:15.051782image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:17.931215image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:20.618380image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:23.415764image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:26.211221image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:29.012624image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:31.691637image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:34.539908image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:37.512762image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:40.414213image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:43.231467image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:46.142949image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:49.006391image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:51.979676image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:54.660274image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:57.622697image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:00.442168image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:03.343059image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:06.999976image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:09.790040image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:09.286227image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:12.273977image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:15.174851image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:18.054393image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:20.743724image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:23.539795image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:26.331930image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:29.133639image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:31.835658image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:34.662330image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:37.650221image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:40.565686image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:43.363718image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:46.272981image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:49.127805image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:52.120957image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:54.783502image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:57.752164image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:00.565037image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:03.478379image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:07.118751image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:09.904909image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:09.404892image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:12.392472image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:15.290814image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:18.176018image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:20.857189image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:23.653326image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:26.447416image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:29.247729image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:31.950465image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:34.776619image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:37.775508image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:40.682104image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:43.489568image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:46.391627image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:49.241341image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:52.260758image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:55.063486image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:25:57.873216image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:00.680161image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:03.597058image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2022-06-21T09:26:07.231213image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Correlations

2022-06-21T09:26:18.052296image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2022-06-21T09:26:18.316581image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2022-06-21T09:26:18.578506image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2022-06-21T09:26:18.808637image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.
2022-06-21T09:26:19.116128image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.

Missing values

2022-06-21T09:26:10.117575image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
A simple visualization of nullity by column.
2022-06-21T09:26:10.954349image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.

Sample

First rows

IDLIMIT_BALSEXEDUCATIONMARRIAGEAGEPAY_0PAY_2PAY_3PAY_4PAY_5PAY_6BILL_AMT1BILL_AMT2BILL_AMT3BILL_AMT4BILL_AMT5BILL_AMT6PAY_AMT1PAY_AMT2PAY_AMT3PAY_AMT4PAY_AMT5PAY_AMT6default.payment.next.month
0120000.02212422-1-1-2-23913.03102.0689.00.00.00.00.0689.00.00.00.00.01
12120000.022226-1200022682.01725.02682.03272.03455.03261.00.01000.01000.01000.00.02000.01
2390000.02223400000029239.014027.013559.014331.014948.015549.01518.01500.01000.01000.01000.05000.00
3450000.02213700000046990.048233.049291.028314.028959.029547.02000.02019.01200.01100.01069.01000.00
4550000.012157-10-10008617.05670.035835.020940.019146.019131.02000.036681.010000.09000.0689.0679.00
5650000.01123700000064400.057069.057608.019394.019619.020024.02500.01815.0657.01000.01000.0800.00
67500000.011229000000367965.0412023.0445007.0542653.0483003.0473944.055000.040000.038000.020239.013750.013770.00
78100000.0222230-1-100-111876.0380.0601.0221.0-159.0567.0380.0601.00.0581.01687.01542.00
89140000.02312800200011285.014096.012108.012211.011793.03719.03329.00.0432.01000.01000.01000.00
91020000.013235-2-2-2-2-1-10.00.00.00.013007.013912.00.00.00.013007.01122.00.00

Last rows

IDLIMIT_BALSEXEDUCATIONMARRIAGEAGEPAY_0PAY_2PAY_3PAY_4PAY_5PAY_6BILL_AMT1BILL_AMT2BILL_AMT3BILL_AMT4BILL_AMT5BILL_AMT6PAY_AMT1PAY_AMT2PAY_AMT3PAY_AMT4PAY_AMT5PAY_AMT6default.payment.next.month
2999029991140000.012141000000138325.0137142.0139110.0138262.049675.046121.06000.07000.04228.01505.02000.02000.00
2999129992210000.0121343222222500.02500.02500.02500.02500.02500.00.00.00.00.00.00.01
299922999310000.013143000-2-2-28802.010400.00.00.00.00.02000.00.00.00.00.00.00
2999329994100000.0112380-1-10003042.01427.0102996.070626.069473.055004.02000.0111784.04000.03000.02000.02000.00
299942999580000.01223422222272557.077708.079384.077519.082607.081158.07000.03500.00.07000.00.04000.01
2999529996220000.013139000000188948.0192815.0208365.088004.031237.015980.08500.020000.05003.03047.05000.01000.00
2999629997150000.013243-1-1-1-1001683.01828.03502.08979.05190.00.01837.03526.08998.0129.00.00.00
299972999830000.012237432-1003565.03356.02758.020878.020582.019357.00.00.022000.04200.02000.03100.01
299982999980000.0131411-1000-1-1645.078379.076304.052774.011855.048944.085900.03409.01178.01926.052964.01804.01
299993000050000.01214600000047929.048905.049764.036535.032428.015313.02078.01800.01430.01000.01000.01000.01