Spaces:
Runtime error
Runtime error
Update
Browse files
app.py
CHANGED
|
@@ -12,8 +12,6 @@ from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
|
| 12 |
|
| 13 |
DESCRIPTION = "# [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)"
|
| 14 |
|
| 15 |
-
if (SPACE_ID := os.getenv("SPACE_ID")) is not None:
|
| 16 |
-
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
| 17 |
if not torch.cuda.is_available():
|
| 18 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 19 |
|
|
@@ -21,40 +19,23 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
| 21 |
|
| 22 |
MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b"
|
| 23 |
MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl"
|
|
|
|
| 24 |
|
| 25 |
if torch.cuda.is_available():
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# 'processor':
|
| 29 |
-
# AutoProcessor.from_pretrained(MODEL_ID_OPT_6_7B),
|
| 30 |
-
# 'model':
|
| 31 |
-
# Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_OPT_6_7B,
|
| 32 |
-
# device_map='auto',
|
| 33 |
-
# load_in_8bit=True),
|
| 34 |
-
# },
|
| 35 |
-
MODEL_ID_FLAN_T5_XXL: {
|
| 36 |
-
"processor": AutoProcessor.from_pretrained(MODEL_ID_FLAN_T5_XXL),
|
| 37 |
-
"model": Blip2ForConditionalGeneration.from_pretrained(
|
| 38 |
-
MODEL_ID_FLAN_T5_XXL, device_map="auto", load_in_8bit=True
|
| 39 |
-
),
|
| 40 |
-
}
|
| 41 |
-
}
|
| 42 |
else:
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
def generate_caption(
|
| 47 |
-
model_id: str,
|
| 48 |
image: PIL.Image.Image,
|
| 49 |
decoding_method: str,
|
| 50 |
temperature: float,
|
| 51 |
length_penalty: float,
|
| 52 |
repetition_penalty: float,
|
| 53 |
) -> str:
|
| 54 |
-
model_info = model_dict[model_id]
|
| 55 |
-
processor = model_info["processor"]
|
| 56 |
-
model = model_info["model"]
|
| 57 |
-
|
| 58 |
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 59 |
generated_ids = model.generate(
|
| 60 |
pixel_values=inputs.pixel_values,
|
|
@@ -72,7 +53,6 @@ def generate_caption(
|
|
| 72 |
|
| 73 |
|
| 74 |
def answer_question(
|
| 75 |
-
model_id: str,
|
| 76 |
image: PIL.Image.Image,
|
| 77 |
text: str,
|
| 78 |
decoding_method: str,
|
|
@@ -80,10 +60,6 @@ def answer_question(
|
|
| 80 |
length_penalty: float,
|
| 81 |
repetition_penalty: float,
|
| 82 |
) -> str:
|
| 83 |
-
model_info = model_dict[model_id]
|
| 84 |
-
processor = model_info["processor"]
|
| 85 |
-
model = model_info["model"]
|
| 86 |
-
|
| 87 |
inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16)
|
| 88 |
generated_ids = model.generate(
|
| 89 |
**inputs,
|
|
@@ -107,7 +83,6 @@ def postprocess_output(output: str) -> str:
|
|
| 107 |
|
| 108 |
|
| 109 |
def chat(
|
| 110 |
-
model_id: str,
|
| 111 |
image: PIL.Image.Image,
|
| 112 |
text: str,
|
| 113 |
decoding_method: str,
|
|
@@ -123,7 +98,6 @@ def chat(
|
|
| 123 |
prompt = " ".join(history_qa)
|
| 124 |
|
| 125 |
output = answer_question(
|
| 126 |
-
model_id,
|
| 127 |
image,
|
| 128 |
prompt,
|
| 129 |
decoding_method,
|
|
@@ -164,24 +138,14 @@ examples = [
|
|
| 164 |
|
| 165 |
with gr.Blocks(css="style.css") as demo:
|
| 166 |
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
image = gr.Image(type="pil")
|
| 169 |
with gr.Accordion(label="Advanced settings", open=False):
|
| 170 |
-
with gr.Row():
|
| 171 |
-
model_id_caption = gr.Dropdown(
|
| 172 |
-
label="Model ID for image captioning",
|
| 173 |
-
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
|
| 174 |
-
value=MODEL_ID_FLAN_T5_XXL,
|
| 175 |
-
interactive=False,
|
| 176 |
-
visible=False,
|
| 177 |
-
)
|
| 178 |
-
model_id_chat = gr.Dropdown(
|
| 179 |
-
label="Model ID for VQA",
|
| 180 |
-
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
|
| 181 |
-
value=MODEL_ID_FLAN_T5_XXL,
|
| 182 |
-
interactive=False,
|
| 183 |
-
visible=False,
|
| 184 |
-
)
|
| 185 |
sampling_method = gr.Radio(
|
| 186 |
label="Text Decoding Method",
|
| 187 |
choices=["Beam search", "Nucleus sampling"],
|
|
@@ -225,16 +189,12 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 225 |
|
| 226 |
gr.Examples(
|
| 227 |
examples=examples,
|
| 228 |
-
inputs=[
|
| 229 |
-
image,
|
| 230 |
-
vqa_input,
|
| 231 |
-
],
|
| 232 |
)
|
| 233 |
|
| 234 |
caption_button.click(
|
| 235 |
fn=generate_caption,
|
| 236 |
inputs=[
|
| 237 |
-
model_id_caption,
|
| 238 |
image,
|
| 239 |
sampling_method,
|
| 240 |
temperature,
|
|
@@ -246,7 +206,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 246 |
)
|
| 247 |
|
| 248 |
chat_inputs = [
|
| 249 |
-
model_id_chat,
|
| 250 |
image,
|
| 251 |
vqa_input,
|
| 252 |
sampling_method,
|
|
@@ -296,4 +255,5 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 296 |
queue=False,
|
| 297 |
)
|
| 298 |
|
| 299 |
-
|
|
|
|
|
|
| 12 |
|
| 13 |
DESCRIPTION = "# [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)"
|
| 14 |
|
|
|
|
|
|
|
| 15 |
if not torch.cuda.is_available():
|
| 16 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 17 |
|
|
|
|
| 19 |
|
| 20 |
MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b"
|
| 21 |
MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl"
|
| 22 |
+
MODEL_ID = os.getenv("MODEL_ID", MODEL_ID_FLAN_T5_XXL)
|
| 23 |
|
| 24 |
if torch.cuda.is_available():
|
| 25 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
| 26 |
+
model = Blip2ForConditionalGeneration.from_pretrained(MODEL_ID, device_map="auto", load_in_8bit=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
else:
|
| 28 |
+
processor = None
|
| 29 |
+
model = None
|
| 30 |
|
| 31 |
|
| 32 |
def generate_caption(
|
|
|
|
| 33 |
image: PIL.Image.Image,
|
| 34 |
decoding_method: str,
|
| 35 |
temperature: float,
|
| 36 |
length_penalty: float,
|
| 37 |
repetition_penalty: float,
|
| 38 |
) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 40 |
generated_ids = model.generate(
|
| 41 |
pixel_values=inputs.pixel_values,
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
def answer_question(
|
|
|
|
| 56 |
image: PIL.Image.Image,
|
| 57 |
text: str,
|
| 58 |
decoding_method: str,
|
|
|
|
| 60 |
length_penalty: float,
|
| 61 |
repetition_penalty: float,
|
| 62 |
) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16)
|
| 64 |
generated_ids = model.generate(
|
| 65 |
**inputs,
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
def chat(
|
|
|
|
| 86 |
image: PIL.Image.Image,
|
| 87 |
text: str,
|
| 88 |
decoding_method: str,
|
|
|
|
| 98 |
prompt = " ".join(history_qa)
|
| 99 |
|
| 100 |
output = answer_question(
|
|
|
|
| 101 |
image,
|
| 102 |
prompt,
|
| 103 |
decoding_method,
|
|
|
|
| 138 |
|
| 139 |
with gr.Blocks(css="style.css") as demo:
|
| 140 |
gr.Markdown(DESCRIPTION)
|
| 141 |
+
gr.DuplicateButton(
|
| 142 |
+
value="Duplicate Space for private use",
|
| 143 |
+
elem_id="duplicate-button",
|
| 144 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
| 145 |
+
)
|
| 146 |
|
| 147 |
image = gr.Image(type="pil")
|
| 148 |
with gr.Accordion(label="Advanced settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
sampling_method = gr.Radio(
|
| 150 |
label="Text Decoding Method",
|
| 151 |
choices=["Beam search", "Nucleus sampling"],
|
|
|
|
| 189 |
|
| 190 |
gr.Examples(
|
| 191 |
examples=examples,
|
| 192 |
+
inputs=[image, vqa_input],
|
|
|
|
|
|
|
|
|
|
| 193 |
)
|
| 194 |
|
| 195 |
caption_button.click(
|
| 196 |
fn=generate_caption,
|
| 197 |
inputs=[
|
|
|
|
| 198 |
image,
|
| 199 |
sampling_method,
|
| 200 |
temperature,
|
|
|
|
| 206 |
)
|
| 207 |
|
| 208 |
chat_inputs = [
|
|
|
|
| 209 |
image,
|
| 210 |
vqa_input,
|
| 211 |
sampling_method,
|
|
|
|
| 255 |
queue=False,
|
| 256 |
)
|
| 257 |
|
| 258 |
+
if __name__ == "__main__":
|
| 259 |
+
demo.queue(max_size=10).launch()
|
style.css
CHANGED
|
@@ -1,3 +1,10 @@
|
|
| 1 |
h1 {
|
| 2 |
text-align: center;
|
| 3 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
h1 {
|
| 2 |
text-align: center;
|
| 3 |
}
|
| 4 |
+
|
| 5 |
+
#duplicate-button {
|
| 6 |
+
margin: auto;
|
| 7 |
+
color: #fff;
|
| 8 |
+
background: #1565c0;
|
| 9 |
+
border-radius: 100vh;
|
| 10 |
+
}
|