import gradio as gr import os, sys import argparse import copy from IPython.display import display from PIL import Image, ImageDraw, ImageFont from torchvision.ops import box_convert import supervision as sv # segment anything from segment_anything import build_sam, SamPredictor import cv2 import numpy as np import matplotlib.pyplot as plt # diffusers import PIL import requests import torch from io import BytesIO from diffusers import StableDiffusionInpaintPipeline from huggingface_hub import hf_hub_download # load models device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # stable diffusion (inpainting) sd_pipe = StableDiffusionInpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-2-inpainting", torch_dtype=torch.float16, ).to(device) def generate_image(image, mask, prompt, negative_prompt, pipe, seed): # resize for inpainting w, h = image.size in_image = image.resize((512, 512)) in_mask = mask.resize((512, 512)) generator = torch.Generator(device).manual_seed(seed) result = pipe(image=in_image, mask_image=in_mask, prompt=prompt, negative_prompt=negative_prompt, generator=generator) result = result.images[0] return result.resize((w, h)) prompt="perfect skin" negative_prompt="" seed = 7 # for reproducibility def predict(inputs): # load image image, mask = inputs["image"], inputs["mask"] # convert image_source_pil = Image.fromarray(image) image_mask_pil = Image.fromarray(mask) # inference generated_image = generate_image(image=image_source_pil, mask=image_mask_pil, prompt=prompt, negative_prompt=negative_prompt, pipe=sd_pipe, seed=seed) return generated_image # gradio interface demo = gr.Interface(fn=predict, inputs=gr.Image(source="upload", # interactive=True, height=512, tool="sketch", type="numpy"), outputs=gr.Image(), title="Perfect Skin", article="

Perfect Skin | Demo

", allow_flagging="never", ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0") #share=True