merligus commited on
Commit
20a85a7
·
1 Parent(s): 4dab0a2

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Mtr Sd
3
- emoji: 🚀
4
- colorFrom: red
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 3.39.0
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: mtr-sd
3
+ app_file: server.py
 
 
4
  sdk: gradio
5
+ sdk_version: 3.35.2
 
 
6
  ---
 
 
__pycache__/mini_sd.cpython-38.pyc ADDED
Binary file (577 Bytes). View file
 
images/person1.jpg ADDED
images/person2.jpg ADDED
sd.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os, sys
3
+
4
+ import argparse
5
+ import copy
6
+
7
+ from IPython.display import display
8
+ from PIL import Image, ImageDraw, ImageFont
9
+ from torchvision.ops import box_convert
10
+
11
+ import supervision as sv
12
+
13
+ # segment anything
14
+ from segment_anything import build_sam, SamPredictor
15
+ import cv2
16
+ import numpy as np
17
+ import matplotlib.pyplot as plt
18
+
19
+ # diffusers
20
+ import PIL
21
+ import requests
22
+ import torch
23
+ from io import BytesIO
24
+ from diffusers import StableDiffusionInpaintPipeline
25
+
26
+ from huggingface_hub import hf_hub_download
27
+
28
+ # load models
29
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
30
+
31
+ # stable diffusion (inpainting)
32
+ sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
33
+ "stabilityai/stable-diffusion-2-inpainting",
34
+ torch_dtype=torch.float16,
35
+ ).to(device)
36
+
37
+ def generate_image(image, mask, prompt, negative_prompt, pipe, seed):
38
+ # resize for inpainting
39
+ w, h = image.size
40
+ in_image = image.resize((512, 512))
41
+ in_mask = mask.resize((512, 512))
42
+
43
+ generator = torch.Generator(device).manual_seed(seed)
44
+
45
+ result = pipe(image=in_image, mask_image=in_mask, prompt=prompt, negative_prompt=negative_prompt, generator=generator)
46
+ result = result.images[0]
47
+
48
+ return result.resize((w, h))
49
+
50
+ prompt="perfect skin"
51
+ negative_prompt=""
52
+ seed = 7 # for reproducibility
53
+ def predict(inputs):
54
+ # load image
55
+ image, mask = inputs["image"], inputs["mask"]
56
+
57
+ # convert
58
+ image_source_pil = Image.fromarray(image)
59
+ image_mask_pil = Image.fromarray(mask)
60
+
61
+ # inference
62
+ generated_image = generate_image(image=image_source_pil, mask=image_mask_pil, prompt=prompt, negative_prompt=negative_prompt, pipe=sd_pipe, seed=seed)
63
+ return generated_image
64
+
65
+ # gradio interface
66
+ demo = gr.Interface(fn=predict,
67
+ inputs=gr.Image(source="upload",
68
+ # interactive=True,
69
+ height=512,
70
+ tool="sketch",
71
+ type="numpy"),
72
+ outputs=gr.Image(),
73
+ title="Perfect Skin",
74
+ article="<p style='text-align: center'>Perfect Skin | Demo</p>",
75
+ allow_flagging="never",
76
+ )
77
+
78
+ if __name__ == "__main__":
79
+ demo.launch(server_name="0.0.0.0") #share=True
server.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os, sys
3
+
4
+ import argparse
5
+ import copy
6
+
7
+ from IPython.display import display
8
+ from PIL import Image, ImageDraw, ImageFont
9
+ from torchvision.ops import box_convert
10
+
11
+ import supervision as sv
12
+
13
+ # segment anything
14
+ from segment_anything import build_sam, SamPredictor
15
+ import cv2
16
+ import numpy as np
17
+ import matplotlib.pyplot as plt
18
+
19
+ # diffusers
20
+ import PIL
21
+ import requests
22
+ import torch
23
+ from io import BytesIO
24
+ from diffusers import StableDiffusionInpaintPipeline
25
+
26
+ from huggingface_hub import hf_hub_download
27
+
28
+ # load models
29
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
30
+
31
+ # stable diffusion (inpainting)
32
+ sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
33
+ "stabilityai/stable-diffusion-2-inpainting",
34
+ torch_dtype=torch.float16,
35
+ ).to(device)
36
+
37
+ def generate_image(image, mask, prompt, negative_prompt, pipe, seed):
38
+ # resize for inpainting
39
+ w, h = image.size
40
+ in_image = image.resize((512, 512))
41
+ in_mask = mask.resize((512, 512))
42
+
43
+ generator = torch.Generator(device).manual_seed(seed)
44
+
45
+ result = pipe(image=in_image, mask_image=in_mask, prompt=prompt, negative_prompt=negative_prompt, generator=generator)
46
+ result = result.images[0]
47
+
48
+ return result.resize((w, h))
49
+
50
+ prompt="perfect skin"
51
+ negative_prompt=""
52
+ seed = 7 # for reproducibility
53
+ def predict(image, mask):
54
+ # convert
55
+ image_source_pil = Image.fromarray(image)
56
+ image_mask_pil = Image.fromarray(mask)
57
+
58
+ # inference
59
+ generated_image = generate_image(image=image_source_pil, mask=image_mask_pil, prompt=prompt, negative_prompt=negative_prompt, pipe=sd_pipe, seed=seed)
60
+ return generated_image
61
+
62
+ if __name__ == "__main__":
63
+ io = gr.Interface(predict, ["image", "image"], "image").launch(server_name="0.0.0.0", share=True)