Update loaders/common.py
Browse files- loaders/common.py +90 -76
loaders/common.py
CHANGED
@@ -6,86 +6,100 @@ from langchain.schema import Document
|
|
6 |
import streamlit as st
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
from stats import add_usage
|
9 |
-
import re
|
10 |
-
|
11 |
-
def clean_chat_text(text):
|
12 |
-
"""Clean chat export text to remove special characters and format consistently"""
|
13 |
-
# Remove non-printable characters
|
14 |
-
text = ''.join(char for char in text if char.isprintable())
|
15 |
-
|
16 |
-
# Clean up WhatsApp-style timestamps and phone numbers
|
17 |
-
text = re.sub(r'\[\d{1,2}/\d{1,2}/\d{2,4},\s+\d{1,2}:\d{1,2}:\d{1,2}\s+[AP]M\]', '', text)
|
18 |
-
text = re.sub(r'\+\d{2,3}\s*\d{3,10}\s*\d{3,10}', '', text)
|
19 |
-
|
20 |
-
# Remove joining messages
|
21 |
-
text = re.sub(r'joined using this group\'s invite link', '', text)
|
22 |
-
|
23 |
-
# Remove extra whitespace
|
24 |
-
text = ' '.join(text.split())
|
25 |
-
|
26 |
-
return text
|
27 |
|
28 |
def process_file(vector_store, file, loader_class, file_suffix, stats_db=None):
|
29 |
-
documents = []
|
30 |
-
file_name = file.name
|
31 |
-
file_size = file.size
|
32 |
-
if st.secrets.self_hosted == "false":
|
33 |
-
if file_size > 1000000:
|
34 |
-
st.error("File size is too large. Please upload a file smaller than 1MB or self host.")
|
35 |
-
return
|
36 |
-
|
37 |
-
dateshort = time.strftime("%Y%m%d")
|
38 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file:
|
39 |
-
tmp_file.write(file.getvalue())
|
40 |
-
tmp_file.flush()
|
41 |
-
loader = loader_class(tmp_file.name)
|
42 |
-
documents = loader.load()
|
43 |
-
file_sha1 = compute_sha1_from_file(tmp_file.name)
|
44 |
-
os.remove(tmp_file.name)
|
45 |
-
|
46 |
-
chunk_size = st.session_state['chunk_size']
|
47 |
-
chunk_overlap = st.session_state['chunk_overlap']
|
48 |
-
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
49 |
-
|
50 |
-
documents = text_splitter.split_documents(documents)
|
51 |
-
|
52 |
-
# Clean the text content before creating metadata
|
53 |
-
docs_with_metadata = [Document(page_content=clean_chat_text(doc.page_content),
|
54 |
-
metadata={"file_sha1": file_sha1,
|
55 |
-
"file_size": file_size,
|
56 |
-
"file_name": file_name,
|
57 |
-
"chunk_size": chunk_size,
|
58 |
-
"chunk_overlap": chunk_overlap,
|
59 |
-
"date": dateshort,
|
60 |
-
"user": st.session_state["username"]})
|
61 |
-
for doc in documents]
|
62 |
-
|
63 |
try:
|
64 |
-
|
65 |
-
print(f"
|
66 |
-
print(f"Sample cleaned content: {docs_with_metadata[0].page_content[:200] if docs_with_metadata else 'No documents'}")
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
print(f"Error adding documents to vector store:")
|
77 |
-
print(f"Exception: {str(e)}")
|
78 |
-
print(f"Input details:")
|
79 |
-
print(f"File name: {file_name}")
|
80 |
-
print(f"File size: {file_size}")
|
81 |
-
print(f"File SHA1: {file_sha1}")
|
82 |
-
print(f"Number of documents: {len(docs_with_metadata)}")
|
83 |
-
print(f"Chunk size: {chunk_size}")
|
84 |
-
print(f"Chunk overlap: {chunk_overlap}")
|
85 |
-
print(f"First document preview (truncated):")
|
86 |
-
if docs_with_metadata:
|
87 |
-
print(docs_with_metadata[0].page_content[:500])
|
88 |
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
raise
|
|
|
6 |
import streamlit as st
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
from stats import add_usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def process_file(vector_store, file, loader_class, file_suffix, stats_db=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
try:
|
12 |
+
print("=== Starting file processing ===")
|
13 |
+
print(f"Initial file details - Name: {file.name}, Size: {file.size}")
|
|
|
14 |
|
15 |
+
documents = []
|
16 |
+
file_name = file.name
|
17 |
+
file_size = file.size
|
18 |
+
if st.secrets.self_hosted == "false":
|
19 |
+
if file_size > 1000000:
|
20 |
+
st.error("File size is too large. Please upload a file smaller than 1MB or self host.")
|
21 |
+
return
|
22 |
+
|
23 |
+
dateshort = time.strftime("%Y%m%d")
|
24 |
|
25 |
+
# Debug loading
|
26 |
+
print("=== Document Loading ===")
|
27 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file:
|
28 |
+
tmp_file.write(file.getvalue())
|
29 |
+
tmp_file.flush()
|
30 |
+
print(f"Temporary file created: {tmp_file.name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
loader = loader_class(tmp_file.name)
|
33 |
+
documents = loader.load()
|
34 |
+
print(f"Number of documents after loading: {len(documents)}")
|
35 |
+
print("First document content preview:")
|
36 |
+
if documents:
|
37 |
+
print(documents[0].page_content[:200])
|
38 |
+
|
39 |
+
file_sha1 = compute_sha1_from_file(tmp_file.name)
|
40 |
+
os.remove(tmp_file.name)
|
41 |
+
|
42 |
+
# Debug splitting
|
43 |
+
print("\n=== Document Splitting ===")
|
44 |
+
chunk_size = st.session_state['chunk_size']
|
45 |
+
chunk_overlap = st.session_state['chunk_overlap']
|
46 |
+
print(f"Splitting with chunk_size: {chunk_size}, overlap: {chunk_overlap}")
|
47 |
+
|
48 |
+
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
49 |
+
documents = text_splitter.split_documents(documents)
|
50 |
+
print(f"Number of documents after splitting: {len(documents)}")
|
51 |
+
|
52 |
+
# Debug metadata creation
|
53 |
+
print("\n=== Creating Documents with Metadata ===")
|
54 |
+
docs_with_metadata = []
|
55 |
+
for i, doc in enumerate(documents):
|
56 |
+
if isinstance(doc.page_content, str):
|
57 |
+
if "error" in doc.page_content.lower():
|
58 |
+
print(f"WARNING: Found potential error message in document {i}:")
|
59 |
+
print(doc.page_content[:200])
|
60 |
+
continue # Skip this document
|
61 |
+
|
62 |
+
new_doc = Document(
|
63 |
+
page_content=doc.page_content,
|
64 |
+
metadata={
|
65 |
+
"file_sha1": file_sha1,
|
66 |
+
"file_size": file_size,
|
67 |
+
"file_name": file_name,
|
68 |
+
"chunk_size": chunk_size,
|
69 |
+
"chunk_overlap": chunk_overlap,
|
70 |
+
"date": dateshort,
|
71 |
+
"user": st.session_state["username"]
|
72 |
+
}
|
73 |
+
)
|
74 |
+
docs_with_metadata.append(new_doc)
|
75 |
+
else:
|
76 |
+
print(f"WARNING: Document {i} has non-string content type: {type(doc.page_content)}")
|
77 |
+
print(f"Content: {str(doc.page_content)[:200]}")
|
78 |
+
|
79 |
+
print(f"Final number of documents to be added: {len(docs_with_metadata)}")
|
80 |
+
|
81 |
+
# Vector store addition
|
82 |
+
try:
|
83 |
+
vector_store.add_documents(docs_with_metadata)
|
84 |
+
if stats_db:
|
85 |
+
add_usage(stats_db, "embedding", "file", metadata={
|
86 |
+
"file_name": file_name,
|
87 |
+
"file_type": file_suffix,
|
88 |
+
"chunk_size": chunk_size,
|
89 |
+
"chunk_overlap": chunk_overlap
|
90 |
+
})
|
91 |
+
except Exception as e:
|
92 |
+
print(f"\n=== Vector Store Addition Error ===")
|
93 |
+
print(f"Exception: {str(e)}")
|
94 |
+
print(f"Input details:")
|
95 |
+
print(f"File name: {file_name}")
|
96 |
+
print(f"File size: {file_size}")
|
97 |
+
print(f"File SHA1: {file_sha1}")
|
98 |
+
print(f"Number of documents: {len(docs_with_metadata)}")
|
99 |
+
print(f"Vector store type: {type(vector_store).__name__}")
|
100 |
+
raise
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
print(f"\n=== General Processing Error ===")
|
104 |
+
print(f"Exception occurred during file processing: {str(e)}")
|
105 |
raise
|