melissalau commited on
Commit
2a1a3db
·
1 Parent(s): 79e02f2

added chatbot to main branch

Browse files
Files changed (1) hide show
  1. src/streamlit-ollama-chatbot.py +0 -160
src/streamlit-ollama-chatbot.py DELETED
@@ -1,160 +0,0 @@
1
- import streamlit as st
2
- from langchain_ollama import ChatOllama
3
- from langchain.memory import ConversationBufferMemory
4
- from langchain.memory.chat_message_histories import ChatMessageHistory
5
- from langchain.prompts import PromptTemplate
6
- from langchain_core.runnables import RunnableSequence
7
-
8
- # Streamlit Setup
9
- st.set_page_config(layout="wide")
10
- st.title("My Local Chatbot")
11
-
12
- # Sidebar Inputs
13
- st.sidebar.header("Settings")
14
-
15
- # Dropdown for model selection
16
- model_options = ["llama3:8b", "deepseek-r1:1.5b"]
17
- MODEL = st.sidebar.selectbox("Choose a Model", model_options, index=0)
18
-
19
- # Inputs for history + context size
20
- MAX_HISTORY = st.sidebar.number_input("Max History", min_value=1, max_value=10, value=2, step=1)
21
- CONTEXT_SIZE = st.sidebar.number_input("Context Size", min_value=1024, max_value=16384, value=8192, step=1024)
22
-
23
- # Advanced Parameters
24
- st.sidebar.subheader("Model Parameters")
25
- TEMPERATURE = st.sidebar.slider("Temperature", 0.0, 1.5, 0.7, 0.1)
26
- TOP_P = st.sidebar.slider("Top-p (nucleus sampling)", 0.0, 1.0, 0.9, 0.05)
27
- TOP_K = st.sidebar.slider("Top-k", 0, 100, 40, 5)
28
- MAX_TOKENS = st.sidebar.number_input("Max Tokens", min_value=256, max_value=16384, value=2048, step=256)
29
-
30
- # Memory Controls
31
- def clear_memory():
32
- chat_history = ChatMessageHistory()
33
- st.session_state.memory = ConversationBufferMemory(chat_memory=chat_history)
34
- st.session_state.chat_history = []
35
- st.session_state.summary = ""
36
-
37
- if "chat_history" not in st.session_state:
38
- st.session_state.chat_history = []
39
- if "memory" not in st.session_state:
40
- st.session_state.memory = ConversationBufferMemory(return_messages=True)
41
- # NEW: Initialize a summary variable
42
- if "summary" not in st.session_state:
43
- st.session_state.summary = ""
44
-
45
- # Button to clear memory manually
46
- if st.sidebar.button("Clear Conversation History"):
47
- clear_memory()
48
- # LangChain LLM Setup
49
- llm = ChatOllama(
50
- model=MODEL,
51
- streaming=True,
52
- temperature=TEMPERATURE,
53
- top_p=TOP_P,
54
- top_k=TOP_K,
55
- num_predict=MAX_TOKENS
56
- )
57
-
58
- # ---
59
- # NEW: Summary Chain and Functions
60
-
61
- # Prompt Template for summarization
62
- summary_prompt_template = PromptTemplate(
63
- input_variables=["chat_history"],
64
- template="You are a summarizer. Summarize the following conversation to preserve key information and context. \n\n{chat_history}"
65
- )
66
-
67
- # Chain for summarization
68
- summary_chain = summary_prompt_template | llm
69
-
70
-
71
- def get_summary(chat_history_str):
72
- """Generates a summary of the conversation history."""
73
- return summary_chain.invoke({"chat_history": chat_history_str})
74
-
75
- def summarize_chat():
76
- if not st.session_state.chat_history:
77
- return "No chat history to summarize."
78
-
79
- # Pass the full chat history list to the summarization function
80
- return get_summary(st.session_state.chat_history)
81
-
82
-
83
- if st.sidebar.button("Summarize Chat"):
84
- with st.sidebar:
85
- st.markdown("**Chat Summary:**")
86
- summary = summarize_chat()
87
- st.success(summary)
88
- # ---
89
-
90
- # Main Prompt Template
91
- # Now includes a summary variable
92
- prompt_template = PromptTemplate(
93
- input_variables=["summary", "history", "human_input"],
94
- template="""You are a helpful assistant.
95
- Current conversation summary:
96
- {summary}
97
-
98
- Conversation history:
99
- {history}
100
-
101
- User: {human_input}
102
- Assistant:"""
103
- )
104
-
105
- chain = prompt_template | llm
106
-
107
- # Display Chat History
108
- for msg in st.session_state.chat_history:
109
- with st.chat_message(msg["role"]):
110
- st.markdown(msg["content"])
111
-
112
- # NEW & CORRECTED Trim Function
113
- def trim_memory():
114
- # Trim the chat history to the MAX_HISTORY size
115
- if len(st.session_state.chat_history) > MAX_HISTORY * 2:
116
- # Get the history to be trimmed
117
- history_to_summarize = st.session_state.chat_history[:(len(st.session_state.chat_history) - MAX_HISTORY * 2)]
118
-
119
- # Format the history string for the summary prompt
120
- history_str = ""
121
- for msg in history_to_summarize:
122
- history_str += f"{msg['role']}: {msg['content']}\n"
123
-
124
- # Get a summary of the old messages and append to the existing summary
125
- new_summary = get_summary(history_str)
126
- st.session_state.summary += "\n" + new_summary
127
-
128
- # Remove the old messages from the chat history
129
- st.session_state.chat_history = st.session_state.chat_history[(len(st.session_state.chat_history) - MAX_HISTORY * 2):]
130
-
131
-
132
- # Handle User Input
133
- if prompt := st.chat_input("Say something"):
134
- with st.chat_message("user"):
135
- st.markdown(prompt)
136
-
137
- st.session_state.chat_history.append({"role": "user", "content": prompt})
138
-
139
- # Call the updated trim_memory function
140
- trim_memory()
141
-
142
- # Format the current, non-summarized history for the prompt template
143
- formatted_history = ""
144
- for msg in st.session_state.chat_history:
145
- formatted_history += f"{msg['role']}: {msg['content']}\n"
146
-
147
- with st.chat_message("assistant"):
148
- response_container = st.empty()
149
- full_response = ""
150
-
151
- # Pass both 'human_input', 'history', and 'summary' to the chain
152
- for chunk in chain.stream({
153
- "human_input": prompt,
154
- "history": formatted_history,
155
- "summary": st.session_state.summary
156
- }):
157
- full_response += chunk.content
158
- response_container.markdown(full_response)
159
-
160
- st.session_state.chat_history.append({"role": "assistant", "content": full_response})