melissalau's picture
added renamed file
79e02f2
raw
history blame
5.4 kB
import streamlit as st
from langchain_ollama import ChatOllama
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import ChatMessageHistory
from langchain.prompts import PromptTemplate
from langchain_core.runnables import RunnableSequence
# Streamlit Setup
st.set_page_config(layout="wide")
st.title("My Local Chatbot")
# Sidebar Inputs
st.sidebar.header("Settings")
# Dropdown for model selection
model_options = ["llama3:8b", "deepseek-r1:1.5b"]
MODEL = st.sidebar.selectbox("Choose a Model", model_options, index=0)
# Inputs for history + context size
MAX_HISTORY = st.sidebar.number_input("Max History", min_value=1, max_value=10, value=2, step=1)
CONTEXT_SIZE = st.sidebar.number_input("Context Size", min_value=1024, max_value=16384, value=8192, step=1024)
# Advanced Parameters
st.sidebar.subheader("Model Parameters")
TEMPERATURE = st.sidebar.slider("Temperature", 0.0, 1.5, 0.7, 0.1)
TOP_P = st.sidebar.slider("Top-p (nucleus sampling)", 0.0, 1.0, 0.9, 0.05)
TOP_K = st.sidebar.slider("Top-k", 0, 100, 40, 5)
MAX_TOKENS = st.sidebar.number_input("Max Tokens", min_value=256, max_value=16384, value=2048, step=256)
# Memory Controls
def clear_memory():
chat_history = ChatMessageHistory()
st.session_state.memory = ConversationBufferMemory(chat_memory=chat_history)
st.session_state.chat_history = []
st.session_state.summary = ""
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferMemory(return_messages=True)
# NEW: Initialize a summary variable
if "summary" not in st.session_state:
st.session_state.summary = ""
# Button to clear memory manually
if st.sidebar.button("Clear Conversation History"):
clear_memory()
# LangChain LLM Setup
llm = ChatOllama(
model=MODEL,
streaming=True,
temperature=TEMPERATURE,
top_p=TOP_P,
top_k=TOP_K,
num_predict=MAX_TOKENS
)
# ---
# NEW: Summary Chain and Functions
# Prompt Template for summarization
summary_prompt_template = PromptTemplate(
input_variables=["chat_history"],
template="You are a summarizer. Summarize the following conversation to preserve key information and context. \n\n{chat_history}"
)
# Chain for summarization
summary_chain = summary_prompt_template | llm
def get_summary(chat_history_str):
"""Generates a summary of the conversation history."""
return summary_chain.invoke({"chat_history": chat_history_str})
def summarize_chat():
if not st.session_state.chat_history:
return "No chat history to summarize."
# Pass the full chat history list to the summarization function
return get_summary(st.session_state.chat_history)
if st.sidebar.button("Summarize Chat"):
with st.sidebar:
st.markdown("**Chat Summary:**")
summary = summarize_chat()
st.success(summary)
# ---
# Main Prompt Template
# Now includes a summary variable
prompt_template = PromptTemplate(
input_variables=["summary", "history", "human_input"],
template="""You are a helpful assistant.
Current conversation summary:
{summary}
Conversation history:
{history}
User: {human_input}
Assistant:"""
)
chain = prompt_template | llm
# Display Chat History
for msg in st.session_state.chat_history:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
# NEW & CORRECTED Trim Function
def trim_memory():
# Trim the chat history to the MAX_HISTORY size
if len(st.session_state.chat_history) > MAX_HISTORY * 2:
# Get the history to be trimmed
history_to_summarize = st.session_state.chat_history[:(len(st.session_state.chat_history) - MAX_HISTORY * 2)]
# Format the history string for the summary prompt
history_str = ""
for msg in history_to_summarize:
history_str += f"{msg['role']}: {msg['content']}\n"
# Get a summary of the old messages and append to the existing summary
new_summary = get_summary(history_str)
st.session_state.summary += "\n" + new_summary
# Remove the old messages from the chat history
st.session_state.chat_history = st.session_state.chat_history[(len(st.session_state.chat_history) - MAX_HISTORY * 2):]
# Handle User Input
if prompt := st.chat_input("Say something"):
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.chat_history.append({"role": "user", "content": prompt})
# Call the updated trim_memory function
trim_memory()
# Format the current, non-summarized history for the prompt template
formatted_history = ""
for msg in st.session_state.chat_history:
formatted_history += f"{msg['role']}: {msg['content']}\n"
with st.chat_message("assistant"):
response_container = st.empty()
full_response = ""
# Pass both 'human_input', 'history', and 'summary' to the chain
for chunk in chain.stream({
"human_input": prompt,
"history": formatted_history,
"summary": st.session_state.summary
}):
full_response += chunk.content
response_container.markdown(full_response)
st.session_state.chat_history.append({"role": "assistant", "content": full_response})